1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
<
}
---
# file: roles/azure/tasks/main.yaml
- name: Azure - Load Kernel Modules By Default
lineinfile:
path: "/etc/modules"
state: "present"
line: "{{ item }}"
with_items:
- "vfio-pci"
- "ib_uverbs"
- "mlx4_ib"
- "mlx5_ib"
notify: "Azure - Reload systemd-modules"
tags:
- load-kernel-modules
- name: Azure - Performance Tuning - Adjust nr_hugepages
sysctl:
name: "vm.nr_hugepages"
value: "8192"
state: "present"
sysctl_file: "/etc/sysctl.d/90-csit.conf"
reload: "yes"
tags:
- set-sysctl
- name: Azure - prevent interface renaming
copy:
src: "files/10-dtap.link"
dest: "/etc/systemd/network/"
owner: "root"
group: "root"
mode: "0644"
notify:
- "Rebo/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* buffer_node.h: VLIB buffer handling node helper macros/inlines
*
* Copyright (c) 2008 Eliot Dresselhaus
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef included_vlib_buffer_node_h
#define included_vlib_buffer_node_h
/** \file
vlib buffer/node functions
*/
/** \brief Finish enqueueing two buffers forward in the graph.
Standard dual loop boilerplate element. This is a MACRO,
with MULTIPLE SIDE EFFECTS. In the ideal case,
<code>next_index == next0 == next1</code>,
which means that the speculative enqueue at the top of the dual loop
has correctly dealt with both packets. In that case, the macro does
nothing at all.
@param vm vlib_main_t pointer, varies by thread
@param node current node vlib_node_runtime_t pointer
@param next_index speculated next index used for both packets
@param to_next speculated vector pointer used for both packets
@param n_left_to_next number of slots left in speculated vector
@param bi0 first buffer index
@param bi1 second buffer index
@param next0 actual next index to be used for the first packet
@param next1 actual next index to be used for the second packet
@return @c next_index -- speculative next index to be used for future packets
@return @c to_next -- speculative frame to be used for future packets
@return @c n_left_to_next -- number of slots left in speculative frame
*/
#define vlib_validate_buffer_enqueue_x2(vm,node,next_index,to_next,n_left_to_next,bi0,bi1,next0,next1) \
do { \
int enqueue_code = (next0 != next_index) + 2*(next1 != next_index); \
\
if (PREDICT_FALSE (enqueue_code != 0)) \
{ \
switch (enqueue_code) \
{ \
case 1: \
/* A B A */ \
to_next[-2] = bi1; \
to_next -= 1; \
n_left_to_next += 1; \
vlib_set_next_frame_buffer (vm, node, next0, bi0); \
break; \
\
case 2: \
/* A A B */ \
to_next -= 1; \
n_left_to_next += 1; \
vlib_set_next_frame_buffer (vm, node, next1, bi1); \
break; \
\
case 3: \
/* A B B or A B C */ \
to_next -= 2; \
n_left_to_next += 2; \
vlib_set_next_frame_buffer (vm, node, next0, bi0); \
vlib_set_next_frame_buffer (vm, node, next1, bi1); \
if (next0 == next1) \
{ \
vlib_put_next_frame (vm, node, next_index, \
n_left_to_next); \
next_index = next1; \
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \
} \
} \
} \
} while (0)
/** \brief Finish enqueueing four buffers forward in the graph.
Standard quad loop boilerplate element. This is a MACRO,
with MULTIPLE SIDE EFFECTS. In the ideal case,
<code>next_index == next0 == next1 == next2 == next3</code>,
which means that the speculative enqueue at the top of the quad loop
has correctly dealt with all four packets. In that case, the macro does
nothing at all.
@param vm vlib_main_t pointer, varies by thread
@param node current node vlib_node_runtime_t pointer
@param next_index speculated next index used for both packets
@param to_next speculated vector pointer used for both packets
@param n_left_to_next number of slots left in speculated vector
@param bi0 first buffer index
@param bi1 second buffer index
@param bi2 third buffer index
@param bi3 fourth buffer index
@param next0 actual next index to be used for the first packet
@param next1 actual next index to be used for the second packet
@param next2 actual next index to be used for the third packet
@param next3 actual next index to be used for the fourth packet
@return @c next_index -- speculative next index to be used for future packets
@return @c to_next -- speculative frame to be used for future packets
@return @c n_left_to_next -- number of slots left in speculative frame
*/
#define vlib_validate_buffer_enqueue_x4(vm,node,next_index,to_next,n_left_to_next,bi0,bi1,bi2,bi3,next0,next1,next2,next3) \
do { \
/* After the fact: check the [speculative] enqueue to "next" */ \
u32 fix_speculation = (next_index ^ next0) | (next_index ^ next1) \
| (next_index ^ next2) | (next_index ^ next3); \
if (PREDICT_FALSE(fix_speculation)) \
{ \
/* rewind... */ \
to_next -= 4; \
n_left_to_next += 4; \
\
/* If bi0 belongs to "next", send it there */ \
if (next_index == next0) \
{ \
to_next[0] = bi0; \
to_next++; \
n_left_to_next --; \
} \
else /* send it where it needs to go */ \
vlib_set_next_frame_buffer (vm, node, next0, bi0); \
\
if (next_index == next1) \
{ \
to_next[0] = bi1; \
to_next++; \
n_left_to_next --; \
} \
else \
vlib_set_next_frame_buffer (vm, node, next1, bi1); \
\
if (next_index == next2) \
{ \
to_next[0] = bi2; \
to_next++; \
n_left_to_next --; \
} \
else \
vlib_set_next_frame_buffer (vm, node, next2, bi2); \
\
if (next_index == next3) \
{ \
to_next[0] = bi3; \
to_next++; \
n_left_to_next --; \
} \
else \
{ \
vlib_set_next_frame_buffer (vm, node, next3, bi3); \
\
/* Change speculation: last 2 packets went to the same node*/ \
if (next2 == next3) \
{ \
vlib_put_next_frame (vm, node, next_index, n_left_to_next); \
next_index = next3; \
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \
} \
} \
} \
} while(0);
/** \brief Finish enqueueing one buffer forward in the graph.
Standard single loop boilerplate element. This is a MACRO,
with MULTIPLE SIDE EFFECTS. In the ideal case,
<code>next_index == next0</code>,
which means that the speculative enqueue at the top of the single loop
has correctly dealt with the packet in hand. In that case, the macro does
nothing at all.
@param vm vlib_main_t pointer, varies by thread
@param node current node vlib_node_runtime_t pointer
@param next_index speculated next index used for both packets
@param to_next speculated vector pointer used for both packets
@param n_left_to_next number of slots left in speculated vector
@param bi0 first buffer index
@param next0 actual next index to be used for the first packet
@return @c next_index -- speculative next index to be used for future packets
@return @c to_next -- speculative frame to be used for future packets
@return @c n_left_to_next -- number of slots left in speculative frame
*/
#define vlib_validate_buffer_enqueue_x1(vm,node,next_index,to_next,n_left_to_next,bi0,next0) \
do { \
if (PREDICT_FALSE (next0 != next_index)) \
{ \
vlib_put_next_frame (vm, node, next_index, n_left_to_next + 1); \
next_index = next0; \
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \
\
to_next[0] = bi0; \
to_next += 1; \
n_left_to_next -= 1; \
} \
} while (0)
always_inline uword
generic_buffer_node_inline (vlib_main_t * vm,
vlib_node_runtime_t * node,
vlib_frame_t * frame,
uword sizeof_trace,
void *opaque1,
uword opaque2,
void (*two_buffers) (vlib_main_t * vm,
void *opaque1,
uword opaque2,
vlib_buffer_t * b0,
vlib_buffer_t * b1,
u32 * next0, u32 * next1),
void (*one_buffer) (vlib_main_t * vm,
void *opaque1, uword opaque2,
vlib_buffer_t * b0,
u32 * next0))
{
u32 n_left_from, *from, *to_next;
u32 next_index;
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
next_index = node->cached_next_index;
if (node->flags & VLIB_NODE_FLAG_TRACE)
vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors,
/* stride */ 1, sizeof_trace);
while (n_left_from > 0)
{
u32 n_left_to_next;
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from >= 4 && n_left_to_next >= 2)
{
vlib_buffer_t *p0, *p1;
u32 pi0, next0;
u32 pi1, next1;
/* Prefetch next iteration. */
{
vlib_buffer_t *p2, *p3;
p2 = vlib_get_buffer (vm, from[2]);
p3 = vlib_get_buffer (vm, from[3]);
vlib_prefetch_buffer_header (p2, LOAD);
vlib_prefetch_buffer_header (p3, LOAD);
CLIB_PREFETCH (p2->data, 64, LOAD);
CLIB_PREFETCH (p3->data, 64, LOAD);
}
pi0 = to_next[0] = from[0];
pi1 = to_next[1] = from[1];
from += 2;
to_next += 2;
n_left_from -= 2;
n_left_to_next -= 2;
p0 = vlib_get_buffer (vm, pi0);
p1 = vlib_get_buffer (vm, pi1);
two_buffers (vm, opaque1, opaque2, p0, p1, &next0, &next1);
vlib_validate_buffer_enqueue_x2 (vm, node, next_index,
to_next, n_left_to_next,
pi0, pi1, next0, next1);
}
while (n_left_from > 0 && n_left_to_next > 0)
{
vlib_buffer_t *p0;
u32 pi0, next0;
pi0 = from[0];
to_next[0] = pi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
p0 = vlib_get_buffer (vm, pi0);
one_buffer (vm, opaque1, opaque2, p0, &next0);
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next,
pi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
return frame->n_vectors;
}
static_always_inline void
vlib_buffer_enqueue_to_next (vlib_main_t * vm, vlib_node_runtime_t * node,
u32 * buffers, u16 * nexts, uword count)
{
u32 *to_next, n_left_to_next, max;
u16 next_index;
next_index = nexts[0];
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
max = clib_min (n_left_to_next, count);
while (count)
{
u32 n_enqueued;
if ((nexts[0] != next_index) || n_left_to_next == 0)
{
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
next_index = nexts[0];
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
max = clib_min (n_left_to_next, count);
}
#if defined(CLIB_HAVE_VEC512)
u16x32 next32 = u16x32_load_unaligned (nexts);
next32 = (next32 == u16x32_splat (next32[0]));
u64 bitmap = u16x32_msb_mask (next32);
n_enqueued = count_trailing_zeros (~bitmap);
#elif defined(CLIB_HAVE_VEC256)
u16x16 next16 = u16x16_load_unaligned (nexts);
next16 = (next16 == u16x16_splat (next16[0]));
u64 bitmap = u8x32_msb_mask ((u8x32) next16);
n_enqueued = count_trailing_zeros (~bitmap) / 2;
#elif defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_MSB_MASK)
u16x8 next8 = u16x8_load_unaligned (nexts);
next8 = (next8 == u16x8_splat (next8[0]));
u64 bitmap = u8x16_msb_mask ((u8x16) next8);
n_enqueued = count_trailing_zeros (~bitmap) / 2;
#else
u16 x = 0;
if (count + 3 < max)
{
x |= next_index ^ nexts[1];
x |= next_index ^ nexts[2];
x |= next_index ^ nexts[3];
n_enqueued = (x == 0) ? 4 : 1;
}
else
n_enqueued = 1;
#endif
if (PREDICT_FALSE (n_enqueued > max))
n_enqueued = max;
#ifdef CLIB_HAVE_VEC512
if (n_enqueued >= 32)
{
vlib_buffer_copy_indices (to_next, buffers, 32);
nexts += 32;
to_next += 32;
buffers += 32;
n_left_to_next -= 32;
count -= 32;
max -= 32;
continue;
}
#endif
#ifdef CLIB_HAVE_VEC256
if (n_enqueued >= 16)
{
vlib_buffer_copy_indices (to_next, buffers, 16);
nexts += 16;
to_next += 16;
buffers += 16;
n_left_to_next -= 16;
count -= 16;
max -= 16;
continue;
}
#endif
#ifdef CLIB_HAVE_VEC128
if (n_enqueued >= 8)
{
vlib_buffer_copy_indices (to_next, buffers, 8);
nexts += 8;
to_next += 8;
buffers += 8;
n_left_to_next -= 8;
count -= 8;
max -= 8;
continue;
}
#endif
if (n_enqueued >= 4)
{
vlib_buffer_copy_indices (to_next, buffers, 4);
nexts += 4;
to_next += 4;
buffers += 4;
n_left_to_next -= 4;
count -= 4;
max -= 4;
continue;
}
/* copy */
to_next[0] = buffers[0];
/* next */
nexts += 1;
to_next += 1;
buffers += 1;
n_left_to_next -= 1;
count -= 1;
max -= 1;
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
static_always_inline void
vlib_buffer_enqueue_to_single_next (vlib_main_t * vm,
vlib_node_runtime_t * node, u32 * buffers,
u16 next_index, u32 count)
{
u32 *to_next, n_left_to_next, n_enq;
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
if (PREDICT_TRUE (n_left_to_next >= count))
{
vlib_buffer_copy_indices (to_next, buffers, count);
n_left_to_next -= count;
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
return;
}
n_enq = n_left_to_next;
next:
vlib_buffer_copy_indices (to_next, buffers, n_enq);
n_left_to_next -= n_enq;
if (PREDICT_FALSE (count > n_enq))
{
count -= n_enq;
buffers += n_enq;
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
n_enq = clib_min (n_left_to_next, count);
goto next;
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
static_always_inline u32
vlib_buffer_enqueue_to_thread (vlib_main_t * vm, u32 frame_queue_index,
u32 * buffer_indices, u16 * thread_indices,
u32 n_packets, int drop_on_congestion)
{
vlib_thread_main_t *tm = vlib_get_thread_main ();
vlib_frame_queue_main_t *fqm;
vlib_frame_queue_per_thread_data_t *ptd;
u32 n_left = n_packets;
u32 drop_list[VLIB_FRAME_SIZE], *dbi = drop_list, n_drop = 0;
vlib_frame_queue_elt_t *hf = 0;
u32 n_left_to_next_thread = 0, *to_next_thread = 0;
u32 next_thread_index, current_thread_index = ~0;
int i;
fqm = vec_elt_at_index (tm->frame_queue_mains, frame_queue_index);
ptd = vec_elt_at_index (fqm->per_thread_data, vm->thread_index);
while (n_left)
{
next_thread_index = thread_indices[0];
if (next_thread_index != current_thread_index)
{
if (drop_on_congestion &&
is_vlib_frame_queue_congested
(frame_queue_index, next_thread_index, fqm->queue_hi_thresh,
ptd->congested_handoff_queue_by_thread_index))
{
dbi[0] = buffer_indices[0];
dbi++;
n_drop++;
goto next;
}
vlib_mains[next_thread_index]->check_frame_queues = 1;
if (hf)
hf->n_vectors = VLIB_FRAME_SIZE - n_left_to_next_thread;
hf = vlib_get_worker_handoff_queue_elt (frame_queue_index,
next_thread_index,
ptd->handoff_queue_elt_by_thread_index);
n_left_to_next_thread = VLIB_FRAME_SIZE - hf->n_vectors;
to_next_thread = &hf->buffer_index[hf->n_vectors];
current_thread_index = next_thread_index;
}
to_next_thread[0] = buffer_indices[0];
to_next_thread++;
n_left_to_next_thread--;
if (n_left_to_next_thread == 0)
{
hf->n_vectors = VLIB_FRAME_SIZE;
vlib_put_frame_queue_elt (hf);
current_thread_index = ~0;
ptd->handoff_queue_elt_by_thread_index[next_thread_index] = 0;
hf = 0;
}
/* next */
next:
thread_indices += 1;
buffer_indices += 1;
n_left -= 1;
}
if (hf)
hf->n_vectors = VLIB_FRAME_SIZE - n_left_to_next_thread;
/* Ship frames to the thread nodes */
for (i = 0; i < vec_len (ptd->handoff_queue_elt_by_thread_index); i++)
{
if (ptd->handoff_queue_elt_by_thread_index[i])
{
hf = ptd->handoff_queue_elt_by_thread_index[i];
/*
* It works better to let the handoff node
* rate-adapt, always ship the handoff queue element.
*/
if (1 || hf->n_vectors == hf->last_n_vectors)
{
vlib_put_frame_queue_elt (hf);
ptd->handoff_queue_elt_by_thread_index[i] = 0;
}
else
hf->last_n_vectors = hf->n_vectors;
}
ptd->congested_handoff_queue_by_thread_index[i] =
(vlib_frame_queue_t *) (~0);
}
if (drop_on_congestion && n_drop)
vlib_buffer_free (vm, drop_list, n_drop);
return n_packets - n_drop;
}
#endif /* included_vlib_buffer_node_h */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/
|