summaryrefslogtreecommitdiffstats
path: root/src/vlib/vlib.h
blob: b5fe47b37298f8b018d3447ae1e4ab0aca1e94ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * vlib.h: top-level include file
 *
 * Copyright (c) 2008 Eliot Dresselhaus
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#ifndef included_vlib_h
#define included_vlib_h

#include <vppinfra/clib.h>
#include <vppinfra/elf_clib.h>

/* Generic definitions. */
#include <vlib/defs.h>

/* Forward declarations of structs to avoid circular dependencies. */
struct vlib_main_t;
typedef u32 vlib_log_class_t;

/* All includes in alphabetical order. */
#include <vlib/physmem.h>
#include <vlib/buffer.h>
#include <vlib/cli.h>
#include <vlib/counter.h>
#include <vlib/error.h>
#include <vlib/init.h>
#include <vlib/node.h>
#include <vlib/punt.h>
#include <vlib/trace.h>
#include <vlib/log.h>

/* Main include depends on other vlib/ includes so we put it last. */
#include <vlib/main.h>

/* Inline/extern function declarations. */
#include <vlib/threads.h>
#include <vlib/physmem_funcs.h>
#include <vlib/buffer_funcs.h>
#include <vlib/cli_funcs.h>
#include <vlib/error_funcs.h>
#include <vlib/format_funcs.h>
#include <vlib/node_funcs.h>
#include <vlib/trace_funcs.h>
#include <vlib/global_funcs.h>
#include <vlib/buffer_node.h>
#include <vppinfra/pcap_funcs.h>

#endif /* included_vlib_h */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
# Copyright (c) 2020 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Algorithms to generate plots.
"""


import re
import logging

from collections import OrderedDict
from copy import deepcopy

import hdrh.histogram
import hdrh.codec
import pandas as pd
import plotly.offline as ploff
import plotly.graph_objs as plgo

from plotly.exceptions import PlotlyError

from pal_utils import mean, stdev


COLORS = (
    u"#1A1110",
    u"#DA2647",
    u"#214FC6",
    u"#01786F",
    u"#BD8260",
    u"#FFD12A",
    u"#A6E7FF",
    u"#738276",
    u"#C95A49",
    u"#FC5A8D",
    u"#CEC8EF",
    u"#391285",
    u"#6F2DA8",
    u"#FF878D",
    u"#45A27D",
    u"#FFD0B9",
    u"#FD5240",
    u"#DB91EF",
    u"#44D7A8",
    u"#4F86F7",
    u"#84DE02",
    u"#FFCFF1",
    u"#614051"
)

REGEX_NIC = re.compile(r'(\d*ge\dp\d\D*\d*[a-z]*)-')


def generate_plots(spec, data):
    """Generate all plots specified in the specification file.

    :param spec: Specification read from the specification file.
    :param data: Data to process.
    :type spec: Specification
    :type data: InputData
    """

    generator = {
        u"plot_nf_reconf_box_name": plot_nf_reconf_box_name,
        u"plot_perf_box_name": plot_perf_box_name,
        u"plot_tsa_name": plot_tsa_name,
        u"plot_http_server_perf_box": plot_http_server_perf_box,
        u"plot_nf_heatmap": plot_nf_heatmap,
        u"plot_hdrh_lat_by_percentile": plot_hdrh_lat_by_percentile
    }

    logging.info(u"Generating the plots ...")
    for index, plot in enumerate(spec.plots):
        try:
            logging.info(f"  Plot nr {index + 1}: {plot.get(u'title', u'')}")
            plot[u"limits"] = spec.configuration[u"limits"]
            generator[plot[u"algorithm"]](plot, data)
            logging.info(u"  Done.")
        except NameError as err:
            logging.error(
                f"Probably algorithm {plot[u'algorithm']} is not defined: "
                f"{repr(err)}"
            )
    logging.info(u"Done.")


def plot_hdrh_lat_by_percentile(plot, input_data):
    """Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    logging.info(
        f"    Creating the data set for the {plot.get(u'type', u'')} "
        f"{plot.get(u'title', u'')}."
    )
    if plot.get(u"include", None):
        data = input_data.filter_tests_by_name(
            plot,
            params=[u"name", u"latency", u"parent", u"tags", u"type"]
        )[0][0]
    elif plot.get(u"filter", None):
        data = input_data.filter_data(
            plot,
            params=[u"name", u"latency", u"parent", u"tags", u"type"],
            continue_on_error=True
        )[0][0]
    else:
        job = list(plot[u"data"].keys())[0]
        build = str(plot[u"data"][job][0])
        data = input_data.tests(job, build)

    if data is None or len(data) == 0:
        logging.error(u"No data.")
        return

    desc = {
        u"LAT0": u"No-load.",
        u"PDR10": u"Low-load, 10% PDR.",
        u"PDR50": u"Mid-load, 50% PDR.",
        u"PDR90": u"High-load, 90% PDR.",
        u"PDR": u"Full-load, 100% PDR.",
        u"NDR10": u"Low-load, 10% NDR.",
        u"NDR50": u"Mid-load, 50% NDR.",
        u"NDR90": u"High-load, 90% NDR.",
        u"NDR": u"Full-load, 100% NDR."
    }

    graphs = [
        u"LAT0",
        u"PDR10",
        u"PDR50",
        u"PDR90"
    ]

    file_links = plot.get(u"output-file-links", None)
    target_links = plot.get(u"target-links", None)

    for test in data:
        try:
            if test[u"type"] not in (u"NDRPDR",):
                logging.warning(f"Invalid test type: {test[u'type']}")
                continue
            name = re.sub(REGEX_NIC, u"", test[u"parent"].
                          replace(u'-ndrpdr', u'').replace(u'2n1l-', u''))
            try:
                nic = re.search(REGEX_NIC, test[u"parent"]).group(1)
            except (IndexError, AttributeError, KeyError, ValueError):
                nic = u""
            name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'')

            logging.info(f"    Generating the graph: {name_link}")

            fig = plgo.Figure()
            layout = deepcopy(plot[u"layout"])

            for color, graph in enumerate(graphs):
                for idx, direction in enumerate((u"direction1", u"direction2")):
                    xaxis = [0.0, ]
                    yaxis = [0.0, ]
                    hovertext = [
                        f"<b>{desc[graph]}</b><br>"
                        f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>"
                        f"Percentile: 0.0%<br>"
                        f"Latency: 0.0uSec"
                    ]
                    decoded = hdrh.histogram.HdrHistogram.decode(
                        test[u"latency"][graph][direction][u"hdrh"]
                    )
                    for item in decoded.get_recorded_iterator():
                        percentile = item.percentile_level_iterated_to
                        if percentile > 99.9:
                            continue
                        xaxis.append(percentile)
                        yaxis.append(item.value_iterated_to)
                        hovertext.append(
                            f"<b>{desc[graph]}</b><br>"
                            f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>"
                            f"Percentile: {percentile:.5f}%<br>"
                            f"Latency: {item.value_iterated_to}uSec"
                        )
                    fig.add_trace(
                        plgo.Scatter(
                            x=xaxis,
                            y=yaxis,
                            name=desc[graph],
                            mode=u"lines",
                            legendgroup=desc[graph],
                            showlegend=bool(idx),
                            line=dict(
                                color=COLORS[color],
                                dash=u"solid" if idx % 2 else u"dash"
                            ),
                            hovertext=hovertext,
                            hoverinfo=u"text"
                        )
                    )

            layout[u"title"][u"text"] = f"<b>Latency:</b> {name}"
            fig.update_layout(layout)

            # Create plot
            file_name = f"{plot[u'output-file']}-{name_link}.html"
            logging.info(f"    Writing file {file_name}")

            try:
                # Export Plot
                ploff.plot(fig, show_link=False, auto_open=False,
                           filename=file_name)
                # Add link to the file:
                if file_links and target_links:
                    with open(file_links, u"a") as file_handler:
                        file_handler.write(
                            f"- `{name_link} "
                            f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n"
                        )
            except FileNotFoundError as err:
                logging.error(
                    f"Not possible to write the link to the file "
                    f"{file_links}\n{err}"
                )
            except PlotlyError as err:
                logging.error(f"   Finished with error: {repr(err)}")

        except hdrh.codec.HdrLengthException as err:
            logging.warning(repr(err))
            continue

        except (ValueError, KeyError) as err:
            logging.warning(repr(err))
            continue


def plot_nf_reconf_box_name(plot, input_data):
    """Generate the plot(s) with algorithm: plot_nf_reconf_box_name
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    logging.info(
        f"    Creating the data set for the {plot.get(u'type', u'')} "
        f"{plot.get(u'title', u'')}."
    )
    data = input_data.filter_tests_by_name(
        plot, params=[u"result", u"parent", u"tags", u"type"]
    )
    if data is None:
        logging.error(u"No data.")
        return

    # Prepare the data for the plot
    y_vals = OrderedDict()
    loss = dict()
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test[u"parent"], None) is None:
                    y_vals[test[u"parent"]] = list()
                    loss[test[u"parent"]] = list()
                try:
                    y_vals[test[u"parent"]].append(test[u"result"][u"time"])
                    loss[test[u"parent"]].append(test[u"result"][u"loss"])
                except (KeyError, TypeError):
                    y_vals[test[u"parent"]].append(None)

    # Add None to the lists with missing data
    max_len = 0
    nr_of_samples = list()
    for val in y_vals.values():
        if len(val) > max_len:
            max_len = len(val)
        nr_of_samples.append(len(val))
    for val in y_vals.values():
        if len(val) < max_len:
            val.extend([None for _ in range(max_len - len(val))])

    # Add plot traces
    traces = list()
    df_y = pd.DataFrame(y_vals)
    df_y.head()
    for i, col in enumerate(df_y.columns):
        tst_name = re.sub(REGEX_NIC, u"",
                          col.lower().replace(u'-ndrpdr', u'').
                          replace(u'2n1l-', u''))

        traces.append(plgo.Box(
            x=[str(i + 1) + u'.'] * len(df_y[col]),
            y=[y if y else None for y in df_y[col]],
            name=(
                f"{i + 1}. "
                f"({nr_of_samples[i]:02d} "
                f"run{u's' if nr_of_samples[i] > 1 else u''}, "
                f"packets lost average: {mean(loss[col]):.1f}) "
                f"{u'-'.join(tst_name.split(u'-')[3:-2])}"
            ),
            hoverinfo=u"y+name"
        ))
    try:
        # Create plot
        layout = deepcopy(plot[u"layout"])
        layout[u"title"] = f"<b>Time Lost:</b> {layout[u'title']}"
        layout[u"yaxis"][u"title"] = u"<b>Implied Time Lost [s]</b>"
        layout[u"legend"][u"font"][u"size"] = 14
        layout[u"yaxis"].pop(u"range")
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        file_type = plot.get(u"output-file-type", u".html")
        logging.info(f"    Writing file {plot[u'output-file']}{file_type}.")
        ploff.plot(
            plpl,
            show_link=False,
            auto_open=False,
            filename=f"{plot[u'output-file']}{file_type}"
        )
    except PlotlyError as err:
        logging.error(
            f"   Finished with error: {repr(err)}".replace(u"\n", u" ")
        )
        return


def plot_perf_box_name(plot, input_data):
    """Generate the plot(s) with algorithm: plot_perf_box_name
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    logging.info(
        f"    Creating data set for the {plot.get(u'type', u'')} "
        f"{plot.get(u'title', u'')}."
    )
    data = input_data.filter_tests_by_name(
        plot, params=[u"throughput", u"result", u"parent", u"tags", u"type"])
    if data is None:
        logging.error(u"No data.")
        return

    # Prepare the data for the plot
    y_vals = OrderedDict()
    test_type = u""
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test[u"parent"], None) is None:
                    y_vals[test[u"parent"]] = list()
                try:
                    if (test[u"type"] in (u"NDRPDR", ) and
                            u"-pdr" in plot.get(u"title", u"").lower()):
                        y_vals[test[u"parent"]].\
                            append(test[u"throughput"][u"PDR"][u"LOWER"])
                        test_type = u"NDRPDR"
                    elif (test[u"type"] in (u"NDRPDR", ) and
                          u"-ndr" in plot.get(u"title", u"").lower()):
                        y_vals[test[u"parent"]]. \
                            append(test[u"throughput"][u"NDR"][u"LOWER"])
                        test_type = u"NDRPDR"
                    elif test[u"type"] in (u"SOAK", ):
                        y_vals[test[u"parent"]].\
                            append(test[u"throughput"][u"LOWER"])
                        test_type = u"SOAK"
                    elif test[u"type"] in (u"HOSTSTACK", ):
                        if u"LDPRELOAD" in test[u"tags"]:
                            y_vals[test[u"parent"]].append(
                                float(test[u"result"][u"bits_per_second"]) / 1e3
                            )
                        elif u"VPPECHO" in test[u"tags"]:
                            y_vals[test[u"parent"]].append(
                                (float(test[u"result"][u"client"][u"tx_data"])
                                 * 8 / 1e3) /
                                ((float(test[u"result"][u"client"][u"time"]) +
                                  float(test[u"result"][u"server"][u"time"])) /
                                 2)
                            )
                        test_type = u"HOSTSTACK"
                    else:
                        continue
                except (KeyError, TypeError):
                    y_vals[test[u"parent"]].append(None)

    # Add None to the lists with missing data
    max_len = 0
    nr_of_samples = list()
    for val in y_vals.values():
        if len(val) > max_len:
            max_len = len(val)
        nr_of_samples.append(len(val))
    for val in y_vals.values():
        if len(val) < max_len:
            val.extend([None for _ in range(max_len - len(val))])

    # Add plot traces
    traces = list()
    df_y = pd.DataFrame(y_vals)
    df_y.head()
    y_max = list()
    for i, col in enumerate(df_y.columns):
        tst_name = re.sub(REGEX_NIC, u"",
                          col.lower().replace(u'-ndrpdr', u'').
                          replace(u'2n1l-', u''))
        kwargs = dict(
            x=[str(i + 1) + u'.'] * len(df_y[col]),
            y=[y / 1e6 if y else None for y in df_y[col]],
            name=(
                f"{i + 1}. "
                f"({nr_of_samples[i]:02d} "
                f"run{u's' if nr_of_samples[i] > 1 else u''}) "
                f"{tst_name}"
            ),
            hoverinfo=u"y+name"
        )
        if test_type in (u"SOAK", ):
            kwargs[u"boxpoints"] = u"all"

        traces.append(plgo.Box(**kwargs))

        try:
            val_max = max(df_y[col])
            if val_max:
                y_max.append(int(val_max / 1e6) + 2)
        except (ValueError, TypeError) as err:
            logging.error(repr(err))
            continue

    try:
        # Create plot
        layout = deepcopy(plot[u"layout"])
        if layout.get(u"title", None):
            if test_type in (u"HOSTSTACK", ):
                layout[u"title"] = f"<b>Bandwidth:</b> {layout[u'title']}"
            else:
                layout[u"title"] = f"<b>Throughput:</b> {layout[u'title']}"
        if y_max:
            layout[u"yaxis"][u"range"] = [0, max(y_max)]
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        logging.info(f"    Writing file {plot[u'output-file']}.html.")
        ploff.plot(
            plpl,
            show_link=False,
            auto_open=False,
            filename=f"{plot[u'output-file']}.html"
        )
    except PlotlyError as err:
        logging.error(
            f"   Finished with error: {repr(err)}".replace(u"\n", u" ")
        )
        return


def plot_tsa_name(plot, input_data):
    """Generate the plot(s) with algorithm:
    plot_tsa_name
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    plot_title = plot.get(u"title", u"")
    logging.info(
        f"    Creating data set for the {plot.get(u'type', u'')} {plot_title}."
    )
    data = input_data.filter_tests_by_name(
        plot, params=[u"throughput", u"parent", u"tags", u"type"])
    if data is None:
        logging.error(u"No data.")
        return

    y_vals = OrderedDict()
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test[u"parent"], None) is None:
                    y_vals[test[u"parent"]] = {
                        u"1": list(),
                        u"2": list(),
                        u"4": list()
                    }
                try:
                    if test[u"type"] not in (u"NDRPDR",):
                        continue

                    if u"-pdr" in plot_title.lower():
                        ttype = u"PDR"
                    elif u"-ndr" in plot_title.lower():
                        ttype = u"NDR"
                    else:
                        continue

                    if u"1C" in test[u"tags"]:
                        y_vals[test[u"parent"]][u"1"]. \
                            append(test[u"throughput"][ttype][u"LOWER"])
                    elif u"2C" in test[u"tags"]:
                        y_vals[test[u"parent"]][u"2"]. \
                            append(test[u"throughput"][ttype][u"LOWER"])
                    elif u"4C" in test[u"tags"]:
                        y_vals[test[u"parent"]][u"4"]. \
                            append(test[u"throughput"][ttype][u"LOWER"])
                except (KeyError, TypeError):
                    pass

    if not y_vals:
        logging.warning(f"No data for the plot {plot.get(u'title', u'')}")
        return

    y_1c_max = dict()
    for test_name, test_vals in y_vals.items():
        for key, test_val in test_vals.items():
            if test_val:
                avg_val = sum(test_val) / len(test_val)
                y_vals[test_name][key] = [avg_val, len(test_val)]
                ideal = avg_val / (int(key) * 1e6)
                if test_name not in y_1c_max or ideal > y_1c_max[test_name]:
                    y_1c_max[test_name] = ideal

    vals = OrderedDict()
    y_max = list()
    nic_limit = 0
    lnk_limit = 0
    pci_limit = plot[u"limits"][u"pci"][u"pci-g3-x8"]
    for test_name, test_vals in y_vals.items():
        try:
            if test_vals[u"1"][1]:
                name = re.sub(
                    REGEX_NIC,
                    u"",
                    test_name.replace(u'-ndrpdr', u'').replace(u'2n1l-', u'')
                )
                vals[name] = OrderedDict()
                y_val_1 = test_vals[u"1"][0] / 1e6
                y_val_2 = test_vals[u"2"][0] / 1e6 if test_vals[u"2"][0] \
                    else None
                y_val_4 = test_vals[u"4"][0] / 1e6 if test_vals[u"4"][0] \
                    else None

                vals[name][u"val"] = [y_val_1, y_val_2, y_val_4]
                vals[name][u"rel"] = [1.0, None, None]
                vals[name][u"ideal"] = [
                    y_1c_max[test_name],
                    y_1c_max[test_name] * 2,
                    y_1c_max[test_name] * 4
                ]
                vals[name][u"diff"] = [
                    (y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, None, None
                ]
                vals[name][u"count"] = [
                    test_vals[u"1"][1],
                    test_vals[u"2"][1],
                    test_vals[u"4"][1]
                ]

                try:
                    val_max = max(vals[name][u"val"])
                except ValueError as err:
                    logging.error(repr(err))
                    continue
                if val_max:
                    y_max.append(val_max)

                if y_val_2:
                    vals[name][u"rel"][1] = round(y_val_2 / y_val_1, 2)
                    vals[name][u"diff"][1] = \
                        (y_val_2 - vals[name][u"ideal"][1]) * 100 / y_val_2
                if y_val_4:
                    vals[name][u"rel"][2] = round(y_val_4 / y_val_1, 2)
                    vals[name][u"diff"][2] = \
                        (y_val_4 - vals[name][u"ideal"][2]) * 100 / y_val_4
        except IndexError as err:
            logging.warning(f"No data for {test_name}")
            logging.warning(repr(err))

        # Limits:
        if u"x520" in test_name:
            limit = plot[u"limits"][u"nic"][u"x520"]
        elif u"x710" in test_name:
            limit = plot[u"limits"][u"nic"][u"x710"]
        elif u"xxv710" in test_name:
            limit = plot[u"limits"][u"nic"][u"xxv710"]
        elif u"xl710" in test_name:
            limit = plot[u"limits"][u"nic"][u"xl710"]
        elif u"x553" in test_name:
            limit = plot[u"limits"][u"nic"][u"x553"]
        elif u"cx556a" in test_name:
            limit = plot[u"limits"][u"nic"][u"cx556a"]
        else:
            limit = 0
        if limit > nic_limit:
            nic_limit = limit

        mul = 2 if u"ge2p" in test_name else 1
        if u"10ge" in test_name:
            limit = plot[u"limits"][u"link"][u"10ge"] * mul
        elif u"25ge" in test_name:
            limit = plot[u"limits"][u"link"][u"25ge"] * mul
        elif u"40ge" in test_name:
            limit = plot[u"limits"][u"link"][u"40ge"] * mul
        elif u"100ge" in test_name:
            limit = plot[u"limits"][u"link"][u"100ge"] * mul
        else:
            limit = 0
        if limit > lnk_limit:
            lnk_limit = limit

    traces = list()
    annotations = list()
    x_vals = [1, 2, 4]

    # Limits:
    try:
        threshold = 1.1 * max(y_max)  # 10%
    except ValueError as err:
        logging.error(err)
        return
    nic_limit /= 1e6
    traces.append(plgo.Scatter(
        x=x_vals,
        y=[nic_limit, ] * len(x_vals),
        name=f"NIC: {nic_limit:.2f}Mpps",
        showlegend=False,
        mode=u"lines",
        line=dict(
            dash=u"dot",
            color=COLORS[-1],
            width=1),
        hoverinfo=u"none"
    ))
    annotations.append(dict(
        x=1,
        y=nic_limit,
        xref=u"x",
        yref=u"y",
        xanchor=u"left",
        yanchor=u"bottom",
        text=f"NIC: {nic_limit:.2f}Mpps",
        font=dict(
            size=14,
            color=COLORS[-1],
        ),
        align=u"left",
        showarrow=False
    ))
    y_max.append(nic_limit)

    lnk_limit /= 1e6
    if lnk_limit < threshold:
        traces.append(plgo.Scatter(
            x=x_vals,
            y=[lnk_limit, ] * len(x_vals),
            name=f"Link: {lnk_limit:.2f}Mpps",
            showlegend=False,
            mode=u"lines",
            line=dict(
                dash=u"dot",
                color=COLORS[-2],
                width=1),
            hoverinfo=u"none"
        ))
        annotations.append(dict(
            x=1,
            y=lnk_limit,
            xref=u"x",
            yref=u"y",
            xanchor=u"left",
            yanchor=u"bottom",
            text=f"Link: {lnk_limit:.2f}Mpps",
            font=dict(
                size=14,
                color=COLORS[-2],
            ),
            align=u"left",
            showarrow=False
        ))
        y_max.append(lnk_limit)

    pci_limit /= 1e6
    if (pci_limit < threshold and
            (pci_limit < lnk_limit * 0.95 or lnk_limit > lnk_limit * 1.05)):
        traces.append(plgo.Scatter(
            x=x_vals,
            y=[pci_limit, ] * len(x_vals),
            name=f"PCIe: {pci_limit:.2f}Mpps",
            showlegend=False,
            mode=u"lines",
            line=dict(
                dash=u"dot",
                color=COLORS[-3],
                width=1),
            hoverinfo=u"none"
        ))
        annotations.append(dict(
            x=1,
            y=pci_limit,
            xref=u"x",
            yref=u"y",
            xanchor=u"left",
            yanchor=u"bottom",
            text=f"PCIe: {pci_limit:.2f}Mpps",
            font=dict(
                size=14,
                color=COLORS[-3],
            ),
            align=u"left",
            showarrow=False
        ))
        y_max.append(pci_limit)

    # Perfect and measured:
    cidx = 0
    for name, val in vals.items():
        hovertext = list()
        try:
            for idx in range(len(val[u"val"])):
                htext = ""
                if isinstance(val[u"val"][idx], float):
                    htext += (
                        f"No. of Runs: {val[u'count'][idx]}<br>"
                        f"Mean: {val[u'val'][idx]:.2f}Mpps<br>"
                    )
                if isinstance(val[u"diff"][idx], float):
                    htext += f"Diff: {round(val[u'diff'][idx]):.0f}%<br>"
                if isinstance(val[u"rel"][idx], float):
                    htext += f"Speedup: {val[u'rel'][idx]:.2f}"
                hovertext.append(htext)
            traces.append(
                plgo.Scatter(
                    x=x_vals,
                    y=val[u"val"],
                    name=name,
                    legendgroup=name,
                    mode=u"lines+markers",
                    line=dict(
                        color=COLORS[cidx],
                        width=2),
                    marker=dict(
                        symbol=u"circle",
                        size=10
                    ),
                    text=hovertext,
                    hoverinfo=u"text+name"
                )
            )
            traces.append(
                plgo.Scatter(
                    x=x_vals,
                    y=val[u"ideal"],
                    name=f"{name} perfect",
                    legendgroup=name,
                    showlegend=False,
                    mode=u"lines",
                    line=dict(
                        color=COLORS[cidx],
                        width=2,
                        dash=u"dash"),
                    text=[f"Perfect: {y:.2f}Mpps" for y in val[u"ideal"]],
                    hoverinfo=u"text"
                )
            )
            cidx += 1
        except (IndexError, ValueError, KeyError) as err:
            logging.warning(f"No data for {name}\n{repr(err)}")

    try:
        # Create plot
        file_type = plot.get(u"output-file-type", u".html")
        logging.info(f"    Writing file {plot[u'output-file']}{file_type}.")
        layout = deepcopy(plot[u"layout"])
        if layout.get(u"title", None):
            layout[u"title"] = f"<b>Speedup Multi-core:</b> {layout[u'title']}"
        layout[u"yaxis"][u"range"] = [0, int(max(y_max) * 1.1)]
        layout[u"annotations"].extend(annotations)
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        ploff.plot(
            plpl,
            show_link=False,
            auto_open=False,
            filename=f"{plot[u'output-file']}{file_type}"
        )
    except PlotlyError as err:
        logging.error(
            f"   Finished with error: {repr(err)}".replace(u"\n", u" ")
        )
        return


def plot_http_server_perf_box(plot, input_data):
    """Generate the plot(s) with algorithm: plot_http_server_perf_box
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    logging.info(
        f"    Creating the data set for the {plot.get(u'type', u'')} "
        f"{plot.get(u'title', u'')}."
    )
    data = input_data.filter_data(plot)
    if data is None:
        logging.error(u"No data.")
        return

    # Prepare the data for the plot
    y_vals = dict()
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test[u"name"], None) is None:
                    y_vals[test[u"name"]] = list()
                try:
                    y_vals[test[u"name"]].append(test[u"result"])
                except (KeyError, TypeError):
                    y_vals[test[u"name"]].append(None)

    # Add None to the lists with missing data
    max_len = 0
    nr_of_samples = list()
    for val in y_vals.values():
        if len(val) > max_len:
            max_len = len(val)
        nr_of_samples.append(len(val))
    for val in y_vals.values():
        if len(val) < max_len:
            val.extend([None for _ in range(max_len - len(val))])

    # Add plot traces
    traces = list()
    df_y = pd.DataFrame(y_vals)
    df_y.head()
    for i, col in enumerate(df_y.columns):
        name = \
            f"{i + 1}. " \
            f"({nr_of_samples[i]:02d} " \
            f"run{u's' if nr_of_samples[i] > 1 else u''}) " \
            f"{col.lower().replace(u'-ndrpdr', u'')}"
        if len(name) > 50:
            name_lst = name.split(u'-')
            name = u""
            split_name = True
            for segment in name_lst:
                if (len(name) + len(segment) + 1) > 50 and split_name:
                    name += u"<br>    "
                    split_name = False
                name += segment + u'-'
            name = name[:-1]

        traces.append(plgo.Box(x=[str(i + 1) + u'.'] * len(df_y[col]),
                               y=df_y[col],
                               name=name,
                               **plot[u"traces"]))
    try:
        # Create plot
        plpl = plgo.Figure(data=traces, layout=plot[u"layout"])

        # Export Plot
        logging.info(
            f"    Writing file {plot[u'output-file']}"
            f"{plot[u'output-file-type']}."
        )
        ploff.plot(
            plpl,
            show_link=False,
            auto_open=False,
            filename=f"{plot[u'output-file']}{plot[u'output-file-type']}"
        )
    except PlotlyError as err:
        logging.error(
            f"   Finished with error: {repr(err)}".replace(u"\n", u" ")
        )
        return


def plot_nf_heatmap(plot, input_data):
    """Generate the plot(s) with algorithm: plot_nf_heatmap
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    regex_cn = re.compile(r'^(\d*)R(\d*)C$')
    regex_test_name = re.compile(r'^.*-(\d+ch|\d+pl)-'
                                 r'(\d+mif|\d+vh)-'
                                 r'(\d+vm\d+t|\d+dcr\d+t|\d+dcr\d+c).*$')
    vals = dict()

    # Transform the data
    logging.info(
        f"    Creating the data set for the {plot.get(u'type', u'')} "
        f"{plot.get(u'title', u'')}."
    )
    data = input_data.filter_data(plot, continue_on_error=True)
    if data is None or data.empty:
        logging.error(u"No data.")
        return

    for job in data:
        for build in job:
            for test in build:
                for tag in test[u"tags"]:
                    groups = re.search(regex_cn, tag)
                    if groups:
                        chain = str(groups.group(1))
                        node = str(groups.group(2))
                        break
                else:
                    continue
                groups = re.search(regex_test_name, test[u"name"])
                if groups and len(groups.groups()) == 3:
                    hover_name = (
                        f"{str(groups.group(1))}-"
                        f"{str(groups.group(2))}-"
                        f"{str(groups.group(3))}"
                    )
                else:
                    hover_name = u""
                if vals.get(chain, None) is None:
                    vals[chain] = dict()
                if vals[chain].get(node, None) is None:
                    vals[chain][node] = dict(
                        name=hover_name,
                        vals=list(),
                        nr=None,
                        mean=None,
                        stdev=None
                    )
                try:
                    if plot[u"include-tests"] == u"MRR":
                        result = test[u"result"][u"receive-rate"]
                    elif plot[u"include-tests"] == u"PDR":
                        result = test[u"throughput"][u"PDR"][u"LOWER"]
                    elif plot[u"include-tests"] == u"NDR":
                        result = test[u"throughput"][u"NDR"][u"LOWER"]
                    else:
                        result = None
                except TypeError:
                    result = None

                if result:
                    vals[chain][node][u"vals"].append(result)

    if not vals:
        logging.error(u"No data.")
        return

    txt_chains = list()
    txt_nodes = list()
    for key_c in vals:
        txt_chains.append(key_c)
        for key_n in vals[key_c].keys():
            txt_nodes.append(key_n)
            if vals[key_c][key_n][u"vals"]:
                vals[key_c][key_n][u"nr"] = len(vals[key_c][key_n][u"vals"])
                vals[key_c][key_n][u"mean"] = \
                    round(mean(vals[key_c][key_n][u"vals"]) / 1000000, 1)
                vals[key_c][key_n][u"stdev"] = \
                    round(stdev(vals[key_c][key_n][u"vals"]) / 1000000, 1)
    txt_nodes = list(set(txt_nodes))

    def sort_by_int(value):
        """Makes possible to sort a list of strings which represent integers.

        :param value: Integer as a string.
        :type value: str
        :returns: Integer representation of input parameter 'value'.
        :rtype: int
        """
        return int(value)

    txt_chains = sorted(txt_chains, key=sort_by_int)
    txt_nodes = sorted(txt_nodes, key=sort_by_int)

    chains = [i + 1 for i in range(len(txt_chains))]
    nodes = [i + 1 for i in range(len(txt_nodes))]

    data = [list() for _ in range(len(chains))]
    for chain in chains:
        for node in nodes:
            try:
                val = vals[txt_chains[chain - 1]][txt_nodes[node - 1]][u"mean"]
            except (KeyError, IndexError):
                val = None
            data[chain - 1].append(val)

    # Color scales:
    my_green = [[0.0, u"rgb(235, 249, 242)"],
                [1.0, u"rgb(45, 134, 89)"]]

    my_blue = [[0.0, u"rgb(236, 242, 248)"],
               [1.0, u"rgb(57, 115, 172)"]]

    my_grey = [[0.0, u"rgb(230, 230, 230)"],
               [1.0, u"rgb(102, 102, 102)"]]

    hovertext = list()
    annotations = list()

    text = (u"Test: {name}<br>"
            u"Runs: {nr}<br>"
            u"Thput: {val}<br>"
            u"StDev: {stdev}")

    for chain, _ in enumerate(txt_chains):
        hover_line = list()
        for node, _ in enumerate(txt_nodes):
            if data[chain][node] is not None:
                annotations.append(
                    dict(
                        x=node+1,
                        y=chain+1,
                        xref=u"x",
                        yref=u"y",
                        xanchor=u"center",
                        yanchor=u"middle",
                        text=str(data[chain][node]),
                        font=dict(
                            size=14,
                        ),
                        align=u"center",
                        showarrow=False
                    )
                )
                hover_line.append(text.format(
                    name=vals[txt_chains[chain]][txt_nodes[node]][u"name"],
                    nr=vals[txt_chains[chain]][txt_nodes[node]][u"nr"],
                    val=data[chain][node],
                    stdev=vals[txt_chains[chain]][txt_nodes[node]][u"stdev"]))
        hovertext.append(hover_line)

    traces = [
        plgo.Heatmap(
            x=nodes,
            y=chains,
            z=data,
            colorbar=dict(
                title=plot.get(u"z-axis", u""),
                titleside=u"right",
                titlefont=dict(
                    size=16
                ),
                tickfont=dict(
                    size=16,
                ),
                tickformat=u".1f",
                yanchor=u"bottom",
                y=-0.02,
                len=0.925,
            ),
            showscale=True,
            colorscale=my_green,
            text=hovertext,
            hoverinfo=u"text"
        )
    ]

    for idx, item in enumerate(txt_nodes):
        # X-axis, numbers:
        annotations.append(
            dict(
                x=idx+1,
                y=0.05,
                xref=u"x",
                yref=u"y",
                xanchor=u"center",
                yanchor=u"top",
                text=item,
                font=dict(
                    size=16,
                ),
                align=u"center",
                showarrow=False
            )
        )
    for idx, item in enumerate(txt_chains):
        # Y-axis, numbers:
        annotations.append(
            dict(
                x=0.35,
                y=idx+1,
                xref=u"x",
                yref=u"y",
                xanchor=u"right",
                yanchor=u"middle",
                text=item,
                font=dict(
                    size=16,
                ),
                align=u"center",
                showarrow=False
            )
        )
    # X-axis, title:
    annotations.append(
        dict(
            x=0.55,
            y=-0.15,
            xref=u"paper",
            yref=u"y",
            xanchor=u"center",
            yanchor=u"bottom",
            text=plot.get(u"x-axis", u""),
            font=dict(
                size=16,
            ),
            align=u"center",
            showarrow=False
        )
    )
    # Y-axis, title:
    annotations.append(
        dict(
            x=-0.1,
            y=0.5,
            xref=u"x",
            yref=u"paper",
            xanchor=u"center",
            yanchor=u"middle",
            text=plot.get(u"y-axis", u""),
            font=dict(
                size=16,
            ),
            align=u"center",
            textangle=270,
            showarrow=False
        )
    )
    updatemenus = list([
        dict(
            x=1.0,
            y=0.0,
            xanchor=u"right",
            yanchor=u"bottom",
            direction=u"up",
            buttons=list([
                dict(
                    args=[
                        {
                            u"colorscale": [my_green, ],
                            u"reversescale": False
                        }
                    ],
                    label=u"Green",
                    method=u"update"
                ),
                dict(
                    args=[
                        {
                            u"colorscale": [my_blue, ],
                            u"reversescale": False
                        }
                    ],
                    label=u"Blue",
                    method=u"update"
                ),
                dict(
                    args=[
                        {
                            u"colorscale": [my_grey, ],
                            u"reversescale": False
                        }
                    ],
                    label=u"Grey",
                    method=u"update"
                )
            ])
        )
    ])

    try:
        layout = deepcopy(plot[u"layout"])
    except KeyError as err:
        logging.error(f"Finished with error: No layout defined\n{repr(err)}")
        return

    layout[u"annotations"] = annotations
    layout[u'updatemenus'] = updatemenus

    try:
        # Create plot
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        logging.info(f"    Writing file {plot[u'output-file']}.html")
        ploff.plot(
            plpl,
            show_link=False,
            auto_open=False,
            filename=f"{plot[u'output-file']}.html"
        )
    except PlotlyError as err:
        logging.error(
            f"   Finished with error: {repr(err)}".replace(u"\n", u" ")
        )
        return