summaryrefslogtreecommitdiffstats
path: root/src/vnet/bier/bier_imp_node.c
blob: e9aae93b460a215f39a3d68dad5dc24744faf1dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * Copyright (c) 2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <vnet/bier/bier_imp.h>
#include <vnet/bier/bier_hdr_inlines.h>
#include <vnet/ip/ip.h>

/**
 * @brief A struct to hold tracing information for the BIER imposition
 * node.
 */
typedef struct bier_imp_trace_t_
{
    /**
     * BIER imposition object hit
     */
    index_t imp;

    /**
     * BIER hdr applied
     */
    bier_hdr_t hdr;
} bier_imp_trace_t;

always_inline uword
bier_imp_dpo_inline (vlib_main_t * vm,
                     vlib_node_runtime_t * node,
                     vlib_frame_t * from_frame,
                     fib_protocol_t fproto,
                     bier_hdr_proto_id_t bproto)
{
    u32 n_left_from, next_index, * from, * to_next;

    from = vlib_frame_vector_args (from_frame);
    n_left_from = from_frame->n_vectors;

    next_index = node->cached_next_index;

    while (n_left_from > 0)
    {
        u32 n_left_to_next;

        vlib_get_next_frame(vm, node, next_index, to_next, n_left_to_next);

        while (n_left_from > 0 && n_left_to_next > 0)
        {
            vlib_buffer_t * b0;
            bier_imp_t *bimp0;
            bier_hdr_t *hdr0;
            u32 bi0, bii0;
            u32 next0;

            bi0 = from[0];
            to_next[0] = bi0;
            from += 1;
            to_next += 1;
            n_left_from -= 1;
            n_left_to_next -= 1;

            b0 = vlib_get_buffer (vm, bi0);

            bii0 = vnet_buffer(b0)->ip.adj_index[VLIB_TX];
            bimp0 = bier_imp_get(bii0);

            if (FIB_PROTOCOL_IP4 == fproto)
            {
                /*
                 * decrement the TTL on ingress to the BIER domain
                 */
                ip4_header_t * ip0 = vlib_buffer_get_current(b0);
                u32 checksum0;

                checksum0 = ip0->checksum + clib_host_to_net_u16 (0x0100);
                checksum0 += checksum0 >= 0xffff;

                ip0->checksum = checksum0;
                ip0->ttl -= 1;

                /*
                 * calculate an entropy
                 */
                if (0 == vnet_buffer(b0)->ip.flow_hash)
                {
                    vnet_buffer(b0)->ip.flow_hash =
                        ip4_compute_flow_hash (ip0, IP_FLOW_HASH_DEFAULT);
                }
            }
            if (FIB_PROTOCOL_IP6 == fproto)
            {
                /*
                 * decrement the TTL on ingress to the BIER domain
                 */
                ip6_header_t * ip0 = vlib_buffer_get_current(b0);

                ip0->hop_limit -= 1;

                /*
                 * calculate an entropy
                 */
                if (0 == vnet_buffer(b0)->ip.flow_hash)
                {
                    vnet_buffer(b0)->ip.flow_hash =
                        ip6_compute_flow_hash (ip0, IP_FLOW_HASH_DEFAULT);
                }
            }

            /* Paint the BIER header */
            vlib_buffer_advance(b0, -(sizeof(bier_hdr_t) +
                                      bier_hdr_len_id_to_num_bytes(bimp0->bi_tbl.bti_hdr_len)));
            hdr0 = vlib_buffer_get_current(b0);
            clib_memcpy(hdr0, &bimp0->bi_hdr,
                        (sizeof(bier_hdr_t) +
                         bier_hdr_len_id_to_num_bytes(bimp0->bi_tbl.bti_hdr_len)));
            /*
             * Fixup the entropy and protocol, both of which have a
             * zero value post the paint job
             */
            hdr0->bh_oam_dscp_proto |=
                clib_host_to_net_u16(bproto << BIER_HDR_PROTO_FIELD_SHIFT);
            hdr0->bh_first_word |=
                clib_host_to_net_u32((vnet_buffer(b0)->ip.flow_hash &
                                      BIER_HDR_ENTROPY_FIELD_MASK) <<
                                     BIER_HDR_ENTROPY_FIELD_SHIFT);

            /* next node */
            next0 = bimp0->bi_dpo[fproto].dpoi_next_node;
            vnet_buffer(b0)->ip.adj_index[VLIB_TX] =
                bimp0->bi_dpo[fproto].dpoi_index;

            if (PREDICT_FALSE(b0->flags & VLIB_BUFFER_IS_TRACED))
            {
                bier_imp_trace_t *tr =
                    vlib_add_trace (vm, node, b0, sizeof (*tr));
                tr->imp = bii0;
                tr->hdr = *hdr0;
            }

            vlib_validate_buffer_enqueue_x1(vm, node, next_index, to_next,
                                            n_left_to_next, bi0, next0);
        }
        vlib_put_next_frame (vm, node, next_index, n_left_to_next);
    }
    return from_frame->n_vectors;
}

static u8 *
format_bier_imp_trace (u8 * s, va_list * args)
{
    CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
    CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
    bier_imp_trace_t * t;
    u32 indent;

    t = va_arg (*args, bier_imp_trace_t *);
    indent = format_get_indent (s);

    s = format (s, "%U", format_bier_imp, t->imp, indent, BIER_SHOW_BRIEF);
    return (s);
}

static uword
bier_imp_ip4 (vlib_main_t * vm,
              vlib_node_runtime_t * node,
              vlib_frame_t * frame)
{
    return (bier_imp_dpo_inline(vm, node, frame,
                                FIB_PROTOCOL_IP4,
                                BIER_HDR_PROTO_IPV4));
}

VLIB_REGISTER_NODE (bier_imp_ip4_node) = {
    .function = bier_imp_ip4,
    .name = "bier-imp-ip4",
    .vector_size = sizeof (u32),

    .format_trace = format_bier_imp_trace,
    .n_next_nodes = 1,
    .next_nodes = {
        [0] = "error-drop",
    }
};
VLIB_NODE_FUNCTION_MULTIARCH (bier_imp_ip4_node, bier_imp_ip4)

static uword
bier_imp_ip6 (vlib_main_t * vm,
              vlib_node_runtime_t * node,
              vlib_frame_t * frame)
{
    return (bier_imp_dpo_inline(vm, node, frame,
                                FIB_PROTOCOL_IP6,
                                BIER_HDR_PROTO_IPV6));
}

VLIB_REGISTER_NODE (bier_imp_ip6_node) = {
    .function = bier_imp_ip6,
    .name = "bier-imp-ip6",
    .vector_size = sizeof (u32),

    .format_trace = format_bier_imp_trace,
    .n_next_nodes = 1,
    .next_nodes = {
        [0] = "error-drop",
    }
};
VLIB_NODE_FUNCTION_MULTIARCH (bier_imp_ip6_node, bier_imp_ip6)
pan>); /* Time should always move forward. */ ASSERT (dt >= w->current_time_index); dt -= w->current_time_index; /* Find level and offset within level. Level i has bins of size 2^((i+1)*M) */ rtime = dt; for (level_index = 0; (rtime >> w->log2_bins_per_wheel) != 0; level_index++) rtime = (rtime >> w->log2_bins_per_wheel) - 1; /* Return offset within level and level index. */ ASSERT (rtime < w->bins_per_wheel); *rtime_result = rtime; return level_index; } always_inline uword time_index_to_wheel_index (timing_wheel_t * w, uword level_index, u64 ti) { return (ti >> (level_index * w->log2_bins_per_wheel)) & w->bins_per_wheel_mask; } /* Find current time on this level. */ always_inline uword current_time_wheel_index (timing_wheel_t * w, uword level_index) { return time_index_to_wheel_index (w, level_index, w->current_time_index); } /* Circular wheel indexing. */ always_inline uword wheel_add (timing_wheel_t * w, word x) { return x & w->bins_per_wheel_mask; } always_inline uword rtime_to_wheel_index (timing_wheel_t * w, uword level_index, uword rtime) { uword t = current_time_wheel_index (w, level_index); return wheel_add (w, t + rtime); } static clib_error_t * validate_level (timing_wheel_t * w, uword level_index, uword * n_elts) { timing_wheel_level_t *level; timing_wheel_elt_t *e; uword wi; clib_error_t *error = 0; #define _(x) \ do { \ error = CLIB_ERROR_ASSERT (x); \ ASSERT (! error); \ if (error) return error; \ } while (0) level = vec_elt_at_index (w->levels, level_index); for (wi = 0; wi < vec_len (level->elts); wi++) { /* Validate occupancy bitmap. */ _(clib_bitmap_get_no_check (level->occupancy_bitmap, wi) == (vec_len (level->elts[wi]) > 0)); *n_elts += vec_len (level->elts[wi]); vec_foreach (e, level->elts[wi]) { /* Validate time bin and level. */ u64 e_time; uword e_ti, e_li, e_wi; e_time = e->cpu_time_relative_to_base + w->cpu_time_base; e_li = get_level_and_relative_time (w, e_time, &e_ti); e_wi = rtime_to_wheel_index (w, level_index, e_ti); if (e_li == level_index - 1) /* If this element was scheduled on the previous level it must be wrapped. */ _(e_ti + current_time_wheel_index (w, level_index - 1) >= w->bins_per_wheel); else { _(e_li == level_index); if (e_li == 0) _(e_wi == wi); else _(e_wi == wi || e_wi + 1 == wi || e_wi - 1 == wi); } } } #undef _ return error; } void timing_wheel_validate (timing_wheel_t * w) { uword l; clib_error_t *error = 0; uword n_elts; if (!w->validate) return; n_elts = pool_elts (w->overflow_pool); for (l = 0; l < vec_len (w->levels); l++) { error = validate_level (w, l, &n_elts); if (error) clib_error_report (error); } } always_inline void free_elt_vector (timing_wheel_t * w, timing_wheel_elt_t * ev) { /* Poison free elements so we never use them by mistake. */ if (CLIB_DEBUG > 0) clib_memset (ev, ~0, vec_len (ev) * sizeof (ev[0])); _vec_len (ev) = 0; vec_add1 (w->free_elt_vectors, ev); } static timing_wheel_elt_t * insert_helper (timing_wheel_t * w, uword level_index, uword rtime) { timing_wheel_level_t *level; timing_wheel_elt_t *e; uword wheel_index; /* Circular buffer. */ vec_validate (w->levels, level_index); level = vec_elt_at_index (w->levels, level_index); if (PREDICT_FALSE (!level->elts)) { uword max = w->bins_per_wheel - 1; clib_bitmap_validate (level->occupancy_bitmap, max); vec_validate (level->elts, max); } wheel_index = rtime_to_wheel_index (w, level_index, rtime); level->occupancy_bitmap = clib_bitmap_ori (level->occupancy_bitmap, wheel_index); /* Allocate an elt vector from free list if there is one. */ if (!level->elts[wheel_index] && vec_len (w->free_elt_vectors)) level->elts[wheel_index] = vec_pop (w->free_elt_vectors); /* Add element to vector for this time bin. */ vec_add2 (level->elts[wheel_index], e, 1); return e; } /* Insert user data on wheel at given CPU time stamp. */ static void timing_wheel_insert_helper (timing_wheel_t * w, u64 insert_cpu_time, u32 user_data) { timing_wheel_elt_t *e; u64 dt; uword rtime, level_index; level_index = get_level_and_relative_time (w, insert_cpu_time, &rtime); dt = insert_cpu_time - w->cpu_time_base; if (PREDICT_TRUE (0 == (dt >> BITS (e->cpu_time_relative_to_base)))) { e = insert_helper (w, level_index, rtime); e->user_data = user_data; e->cpu_time_relative_to_base = dt; if (insert_cpu_time < w->cached_min_cpu_time_on_wheel) w->cached_min_cpu_time_on_wheel = insert_cpu_time; } else { /* Time too far in the future: add to overflow vector. */ timing_wheel_overflow_elt_t *oe; pool_get (w->overflow_pool, oe); oe->user_data = user_data; oe->cpu_time = insert_cpu_time; } } always_inline uword elt_is_deleted (timing_wheel_t * w, u32 user_data) { return (hash_elts (w->deleted_user_data_hash) > 0 && hash_get (w->deleted_user_data_hash, user_data)); } static timing_wheel_elt_t * delete_user_data (timing_wheel_elt_t * elts, u32 user_data) { uword found_match; timing_wheel_elt_t *e, *new_elts; /* Quickly scan to see if there are any elements to delete in this bucket. */ found_match = 0; vec_foreach (e, elts) { found_match = e->user_data == user_data; if (found_match) break; } if (!found_match) return elts; /* Re-scan to build vector of new elts with matching user_data deleted. */ new_elts = 0; vec_foreach (e, elts) { if (e->user_data != user_data) vec_add1 (new_elts, e[0]); } vec_free (elts); return new_elts; } /* Insert user data on wheel at given CPU time stamp. */ void timing_wheel_insert (timing_wheel_t * w, u64 insert_cpu_time, u32 user_data) { /* Remove previously deleted elements. */ if (elt_is_deleted (w, user_data)) { timing_wheel_level_t *l; uword wi; /* Delete elts with given user data so that stale events don't expire. */ vec_foreach (l, w->levels) { /* *INDENT-OFF* */ clib_bitmap_foreach (wi, l->occupancy_bitmap) { l->elts[wi] = delete_user_data (l->elts[wi], user_data); if (vec_len (l->elts[wi]) == 0) l->occupancy_bitmap = clib_bitmap_andnoti (l->occupancy_bitmap, wi); } /* *INDENT-ON* */ } { timing_wheel_overflow_elt_t *oe; /* *INDENT-OFF* */ pool_foreach (oe, w->overflow_pool) { if (oe->user_data == user_data) pool_put (w->overflow_pool, oe); } /* *INDENT-ON* */ } hash_unset (w->deleted_user_data_hash, user_data); } timing_wheel_insert_helper (w, insert_cpu_time, user_data); } void timing_wheel_delete (timing_wheel_t * w, u32 user_data) { if (!w->deleted_user_data_hash) w->deleted_user_data_hash = hash_create ( /* capacity */ 0, /* value bytes */ 0); hash_set1 (w->deleted_user_data_hash, user_data); } /* Returns time of next expiring element. */ u64 timing_wheel_next_expiring_elt_time (timing_wheel_t * w) { timing_wheel_level_t *l; timing_wheel_elt_t *e; uword li, wi, wi0; u32 min_dt; u64 min_t; uword wrapped = 0; min_dt = ~0; min_t = ~0ULL; vec_foreach (l, w->levels) { if (!l->occupancy_bitmap) continue; li = l - w->levels; wi0 = wi = current_time_wheel_index (w, li); wrapped = 0; while (1) { if (clib_bitmap_get_no_check (l->occupancy_bitmap, wi)) { vec_foreach (e, l->elts[wi]) min_dt = clib_min (min_dt, e->cpu_time_relative_to_base); if (wrapped && li + 1 < vec_len (w->levels)) { uword wi1 = current_time_wheel_index (w, li + 1); if (l[1].occupancy_bitmap && clib_bitmap_get_no_check (l[1].occupancy_bitmap, wi1)) { vec_foreach (e, l[1].elts[wi1]) { min_dt = clib_min (min_dt, e->cpu_time_relative_to_base); } } } min_t = w->cpu_time_base + min_dt; goto done; } wi = wheel_add (w, wi + 1); if (wi == wi0) break; wrapped = wi != wi + 1; } } { timing_wheel_overflow_elt_t *oe; if (min_dt != ~0) min_t = w->cpu_time_base + min_dt; /* *INDENT-OFF* */ pool_foreach (oe, w->overflow_pool) { min_t = clib_min (min_t, oe->cpu_time); } /* *INDENT-ON* */ done: return min_t; } } static inline void insert_elt (timing_wheel_t * w, timing_wheel_elt_t * e) { u64 t = w->cpu_time_base + e->cpu_time_relative_to_base; timing_wheel_insert_helper (w, t, e->user_data); } always_inline u64 elt_cpu_time (timing_wheel_t * w, timing_wheel_elt_t * e) { return w->cpu_time_base + e->cpu_time_relative_to_base; } always_inline void validate_expired_elt (timing_wheel_t * w, timing_wheel_elt_t * e, u64 current_cpu_time) { if (CLIB_DEBUG > 0) { u64 e_time = elt_cpu_time (w, e); /* Verify that element is actually expired. */ ASSERT ((e_time >> w->log2_clocks_per_bin) <= (current_cpu_time >> w->log2_clocks_per_bin)); } } static u32 * expire_bin (timing_wheel_t * w, uword level_index, uword wheel_index, u64 advance_cpu_time, u32 * expired_user_data) { timing_wheel_level_t *level = vec_elt_at_index (w->levels, level_index); timing_wheel_elt_t *e; u32 *x; uword i, j, e_len; e = vec_elt (level->elts, wheel_index); e_len = vec_len (e); vec_add2 (expired_user_data, x, e_len); for (i = j = 0; i < e_len; i++) { validate_expired_elt (w, &e[i], advance_cpu_time); x[j] = e[i].user_data; /* Only advance if elt is not to be deleted. */ j += !elt_is_deleted (w, e[i].user_data); } /* Adjust for deleted elts. */ if (j < e_len) _vec_len (expired_user_data) -= e_len - j; free_elt_vector (w, e); level->elts[wheel_index] = 0; clib_bitmap_set_no_check (level->occupancy_bitmap, wheel_index, 0); return expired_user_data; } /* Called rarely. 32 bit times should only overflow every 4 seconds or so on a fast machine. */ static u32 * advance_cpu_time_base (timing_wheel_t * w, u32 * expired_user_data) { timing_wheel_level_t *l; timing_wheel_elt_t *e; u64 delta; w->stats.cpu_time_base_advances++; delta = ((u64) 1 << w->n_wheel_elt_time_bits); w->cpu_time_base += delta; w->time_index_next_cpu_time_base_update += delta >> w->log2_clocks_per_bin; vec_foreach (l, w->levels) { uword wi; /* *INDENT-OFF* */ clib_bitmap_foreach (wi, l->occupancy_bitmap) { vec_foreach (e, l->elts[wi]) { /* This should always be true since otherwise we would have already expired this element. Note that in the second half of this function we need to take care not to place the expired elements ourselves. */ ASSERT (e->cpu_time_relative_to_base >= delta); e->cpu_time_relative_to_base -= delta; } } /* *INDENT-ON* */ } /* See which overflow elements fit now. */ { timing_wheel_overflow_elt_t *oe; /* *INDENT-OFF* */ pool_foreach (oe, w->overflow_pool) { /* It fits now into 32 bits. */ if (0 == ((oe->cpu_time - w->cpu_time_base) >> BITS (e->cpu_time_relative_to_base))) { u64 ti = oe->cpu_time >> w->log2_clocks_per_bin; if (ti <= w->current_time_index) { /* This can happen when timing wheel is not advanced for a long time (for example when at a gdb breakpoint for a while). */ /* Note: the ti == w->current_time_index means it is also an expired timer */ if (! elt_is_deleted (w, oe->user_data)) vec_add1 (expired_user_data, oe->user_data); } else timing_wheel_insert_helper (w, oe->cpu_time, oe->user_data); pool_put (w->overflow_pool, oe); } } /* *INDENT-ON* */ } return expired_user_data; } static u32 * refill_level (timing_wheel_t * w, uword level_index, u64 advance_cpu_time, uword from_wheel_index, uword to_wheel_index, u32 * expired_user_data) { timing_wheel_level_t *level; timing_wheel_elt_t *to_insert = w->unexpired_elts_pending_insert; u64 advance_time_index = advance_cpu_time >> w->log2_clocks_per_bin; vec_validate (w->stats.refills, level_index); w->stats.refills[level_index] += 1; if (level_index + 1 >= vec_len (w->levels)) goto done; level = vec_elt_at_index (w->levels, level_index + 1); if (!level->occupancy_bitmap) goto done; while (1) { timing_wheel_elt_t *e, *es; if (clib_bitmap_get_no_check (level->occupancy_bitmap, from_wheel_index)) { es = level->elts[from_wheel_index]; level->elts[from_wheel_index] = 0; clib_bitmap_set_no_check (level->occupancy_bitmap, from_wheel_index, 0); vec_foreach (e, es) { u64 e_time = elt_cpu_time (w, e); u64 ti = e_time >> w->log2_clocks_per_bin; if (ti <= advance_time_index) { validate_expired_elt (w, e, advance_cpu_time); if (!elt_is_deleted (w, e->user_data)) vec_add1 (expired_user_data, e->user_data); } else vec_add1 (to_insert, e[0]); } free_elt_vector (w, es); } if (from_wheel_index == to_wheel_index) break; from_wheel_index = wheel_add (w, from_wheel_index + 1); } timing_wheel_validate (w); done: w->unexpired_elts_pending_insert = to_insert; return expired_user_data; } /* Advance wheel and return any expired user data in vector. */ u32 * timing_wheel_advance (timing_wheel_t * w, u64 advance_cpu_time, u32 * expired_user_data, u64 * next_expiring_element_cpu_time) { timing_wheel_level_t *level; uword level_index, advance_rtime, advance_level_index, advance_wheel_index; uword n_expired_user_data_before; u64 current_time_index, advance_time_index; n_expired_user_data_before = vec_len (expired_user_data); /* Re-fill lower levels when time wraps. */ current_time_index = w->current_time_index; advance_time_index = advance_cpu_time >> w->log2_clocks_per_bin; { u64 current_ti, advance_ti; current_ti = current_time_index >> w->log2_bins_per_wheel; advance_ti = advance_time_index >> w->log2_bins_per_wheel; if (PREDICT_FALSE (current_ti != advance_ti)) { if (w->unexpired_elts_pending_insert) _vec_len (w->unexpired_elts_pending_insert) = 0; level_index = 0; while (current_ti != advance_ti) { uword c, a; c = current_ti & (w->bins_per_wheel - 1); a = advance_ti & (w->bins_per_wheel - 1); if (c != a) expired_user_data = refill_level (w, level_index, advance_cpu_time, c, a, expired_user_data); current_ti >>= w->log2_bins_per_wheel; advance_ti >>= w->log2_bins_per_wheel; level_index++; } } } advance_level_index = get_level_and_relative_time (w, advance_cpu_time, &advance_rtime); advance_wheel_index = rtime_to_wheel_index (w, advance_level_index, advance_rtime); /* Empty all occupied bins for entire levels that we advance past. */ for (level_index = 0; level_index < advance_level_index; level_index++) { uword wi; if (level_index >= vec_len (w->levels)) break; level = vec_elt_at_index (w->levels, level_index); /* *INDENT-OFF* */ clib_bitmap_foreach (wi, level->occupancy_bitmap) { expired_user_data = expire_bin (w, level_index, wi, advance_cpu_time, expired_user_data); } /* *INDENT-ON* */ } if (PREDICT_TRUE (level_index < vec_len (w->levels))) { uword wi; level = vec_elt_at_index (w->levels, level_index); wi = current_time_wheel_index (w, level_index); if (level->occupancy_bitmap) while (1) { if (clib_bitmap_get_no_check (level->occupancy_bitmap, wi)) expired_user_data = expire_bin (w, advance_level_index, wi, advance_cpu_time, expired_user_data); /* When we jump out, we have already just expired the bin, corresponding to advance_wheel_index */ if (wi == advance_wheel_index) break; wi = wheel_add (w, wi + 1); } } /* Advance current time index. */ w->current_time_index = advance_time_index; if (vec_len (w->unexpired_elts_pending_insert) > 0) { timing_wheel_elt_t *e; vec_foreach (e, w->unexpired_elts_pending_insert) insert_elt (w, e); _vec_len (w->unexpired_elts_pending_insert) = 0; } /* Don't advance until necessary. */ /* However, if the timing_wheel_advance() hasn't been called for some time, the while() loop will ensure multiple calls to advance_cpu_time_base() in a row until the w->cpu_time_base is fresh enough. */ while (PREDICT_FALSE (advance_time_index >= w->time_index_next_cpu_time_base_update)) expired_user_data = advance_cpu_time_base (w, expired_user_data); if (next_expiring_element_cpu_time) { u64 min_t; /* Anything expired? If so we need to recompute next expiring elt time. */ if (vec_len (expired_user_data) == n_expired_user_data_before && w->cached_min_cpu_time_on_wheel != 0ULL) min_t = w->cached_min_cpu_time_on_wheel; else { min_t = timing_wheel_next_expiring_elt_time (w); w->cached_min_cpu_time_on_wheel = min_t; } *next_expiring_element_cpu_time = min_t; } return expired_user_data; } u8 * format_timing_wheel (u8 * s, va_list * va) { timing_wheel_t *w = va_arg (*va, timing_wheel_t *); int verbose = va_arg (*va, int); u32 indent = format_get_indent (s); s = format (s, "level 0: %.4e - %.4e secs, 2^%d - 2^%d clocks", (f64) (1 << w->log2_clocks_per_bin) / w->cpu_clocks_per_second, (f64) (1 << w->log2_clocks_per_wheel) / w->cpu_clocks_per_second, w->log2_clocks_per_bin, w->log2_clocks_per_wheel); if (verbose) { int l; s = format (s, "\n%Utime base advances %Ld, every %.4e secs", format_white_space, indent + 2, w->stats.cpu_time_base_advances, (f64) ((u64) 1 << w->n_wheel_elt_time_bits) / w->cpu_clocks_per_second); for (l = 0; l < vec_len (w->levels); l++) s = format (s, "\n%Ulevel %d: refills %Ld", format_white_space, indent + 2, l, l < vec_len (w->stats.refills) ? w->stats. refills[l] : (u64) 0); } return s; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */