aboutsummaryrefslogtreecommitdiffstats
path: root/src/vnet/dpo/classify_dpo.h
blob: 48f4b2bf8a5fb2d450f4f1631f3e5edf683c8a95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*
 * Copyright (c) 2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __CLASSIFY_DPO_H__
#define __CLASSIFY_DPO_H__

#include <vnet/vnet.h>
#include <vnet/mpls/packet.h>
#include <vnet/dpo/dpo.h>

/**
 * A representation of an MPLS label for imposition in the data-path
 */
typedef struct classify_dpo_t
{
    dpo_proto_t cd_proto;

    u32 cd_table_index;

    /**
     * Number of locks/users of the label
     */
    u16 cd_locks;
} classify_dpo_t;

extern index_t classify_dpo_create(dpo_proto_t proto,
                                   u32 classify_table_index);

extern u8* format_classify_dpo(u8 *s, va_list *args);

/*
 * Encapsulation violation for fast data-path access
 */
extern classify_dpo_t *classify_dpo_pool;

static inline classify_dpo_t *
classify_dpo_get (index_t index)
{
    return (pool_elt_at_index(classify_dpo_pool, index));
}

extern void classify_dpo_module_init(void);

#endif
mo { color: #ae81ff } /* Literal.Number.Oct */ .highlight .sa { color: #e6db74 } /* Literal.String.Affix */ .highlight .sb { color: #e6db74 } /* Literal.String.Backtick */ .highlight .sc { color: #e6db74 } /* Literal.String.Char */ .highlight .dl { color: #e6db74 } /* Literal.String.Delimiter */ .highlight .sd { color: #e6db74 } /* Literal.String.Doc */ .highlight .s2 { color: #e6db74 } /* Literal.String.Double */ .highlight .se { color: #ae81ff } /* Literal.String.Escape */ .highlight .sh { color: #e6db74 } /* Literal.String.Heredoc */ .highlight .si { color: #e6db74 } /* Literal.String.Interpol */ .highlight .sx { color: #e6db74 } /* Literal.String.Other */ .highlight .sr { color: #e6db74 } /* Literal.String.Regex */ .highlight .s1 { color: #e6db74 } /* Literal.String.Single */ .highlight .ss { color: #e6db74 } /* Literal.String.Symbol */ .highlight .bp { color: #f8f8f2 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #a6e22e } /* Name.Function.Magic */ .highlight .vc { color: #f8f8f2 } /* Name.Variable.Class */ .highlight .vg { color: #f8f8f2 } /* Name.Variable.Global */ .highlight .vi { color: #f8f8f2 } /* Name.Variable.Instance */ .highlight .vm { color: #f8f8f2 } /* Name.Variable.Magic */ .highlight .il { color: #ae81ff } /* Literal.Number.Integer.Long */ } @media (prefers-color-scheme: light) { .highlight .hll { background-color: #ffffcc } .highlight .c { color: #888888 } /* Comment */ .highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */ .highlight .k { color: #008800; font-weight: bold } /* Keyword */ .highlight .ch { color: #888888 } /* Comment.Hashbang */ .highlight .cm { color: #888888 } /* Comment.Multiline */ .highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */ .highlight .cpf { color: #888888 } /* Comment.PreprocFile */ .highlight .c1 { color: #888888 } /* Comment.Single */ .highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */ .highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ .highlight .gr { color: #aa0000 } /* Generic.Error */ .highlight .gh { color: #333333 } /* Generic.Heading */ .highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #555555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666666 } /* Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */ }
# Copyright (c) 2016 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

*** Settings ***
| Resource | resources/libraries/robot/performance.robot
| Library | resources.libraries.python.NodePath
| Force Tags | 3_NODE_SINGLE_LINK_TOPO | PERFTEST | HW_ENV | PERFTEST_LONG
| ...        | NIC_Intel-X520-DA2
| Suite Setup | 3-node Performance Suite Setup with DUT's NIC model
| ... | L2 | Intel-X520-DA2
| Suite Teardown | 3-node Performance Suite Teardown
| Test Setup | Setup all DUTs before test
| Test Teardown | Run Keyword | Remove startup configuration of VPP from all DUTs
| Documentation | *Throughput search suite (based on RFC2544).*
| ...
| ... | Test suite uses 3-node topology TG - DUT1 - DUT2 - TG, with one link
| ... | between nodes. Traffic profile contain 2 L2 streams (1 stream per
| ... | direction). Packets contain Ethernet header, IPv4 header,
| ... | IP protocol=61 and random payload. Ethernet header MAC addresses are
| ... | matching MAC addresses of the TG node.

*** Test Cases ***
| Find NDR by using RFC2544 binary search and 64B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput with non drop rate for 64B frames by using
| | ... | binary search with threshold 0.1Mpps.
| | [Tags] | 1_THREAD_NOHTT_RSS_1 | SINGLE_THREAD
| | ${framesize}= | Set Variable | 64
| | ${min_rate}= | Set Variable | 100000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_64B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '1' worker threads and rss '1' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Add No Multi Seg to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR by using RFC2544 binary search and 1518B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput with non drop rate for 1518B frames by using
| | ... | binary search with threshold 10,000pps.
| | [Tags] | 1_THREAD_NOHTT_RSS_1 | SINGLE_THREAD
| | ${framesize}= | Set Variable | 1518
| | ${min_rate}= | Set Variable | 10000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_1518B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '1' worker threads and rss '1' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Add No Multi Seg to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR by using RFC2544 binary search and 9000B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput with non drop rate for 9000B frames by using
| | ... | binary search with threshold of 5,000pps.
| | [Tags] | 1_THREAD_NOHTT_RSS_1 | SINGLE_THREAD
| | ${framesize}= | Set Variable | 9000
| | ${min_rate}= | Set Variable | 5000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_9000B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '1' worker threads and rss '1' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR with 2 cores and rss 1 by using RFC2544 binary search and 64B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput on 2 cores with non drop rate for 64B frames by using
| | ... | binary search with threshold 0.1Mpps.
| | [Tags] | 2_THREAD_NOHTT_RSS_1 | MULTI_THREAD
| | ${framesize}= | Set Variable | 64
| | ${min_rate}= | Set Variable | 100000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_64B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '2' worker threads and rss '1' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Add No Multi Seg to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR with 2 cores and rss 1 by using RFC2544 binary search and 1518B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput on 2 cores with non drop rate for 1518B frames by
| | ... | using binary search with threshold 10,000pps.
| | [Tags] | 2_THREAD_NOHTT_RSS_1 | MULTI_THREAD
| | ${framesize}= | Set Variable | 1518
| | ${min_rate}= | Set Variable | 10000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_1518B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '2' worker threads and rss '1' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Add No Multi Seg to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR with 2 cores and rss 1 by using RFC2544 binary search and 9000B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput on 2 cores with non drop rate for 9000B frames by
| | ... | using binary search with threshold 5,000pps.
| | [Tags] | 2_THREAD_NOHTT_RSS_1 | MULTI_THREAD
| | ${framesize}= | Set Variable | 9000
| | ${min_rate}= | Set Variable | 5000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_9000B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '2' worker threads and rss '1' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR with 4 cores and rss 2 by using RFC2544 binary search and 64B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput on 4 cores and rss 2 with non drop rate for 64B
| | ... | frames by using binary search with threshold 0.1Mpps.
| | [Tags] | 4_THREAD_NOHTT_RSS_2 | MULTI_THREAD
| | ${framesize}= | Set Variable | 64
| | ${min_rate}= | Set Variable | 100000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_64B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '4' worker threads and rss '2' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Add No Multi Seg to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR with 4 cores and rss 2 by using RFC2544 binary search and 1518B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput on 4 cores and rss 2 with non drop rate for 1518B
| | ... | frames by using binary search with threshold 10,000pps.
| | [Tags] | 4_THREAD_NOHTT_RSS_2 | MULTI_THREAD
| | ${framesize}= | Set Variable | 1518
| | ${min_rate}= | Set Variable | 10000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_1518B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '4' worker threads and rss '2' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Add No Multi Seg to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}

| Find NDR with 4 cores and rss 2 by using RFC2544 binary search and 9000B frames through bridge domain in 3-node topology
| | [Documentation]
| | ... | Find throughput on 4 cores and rss 2 with non drop rate for 9000B
| | ... | frames by using binary search with threshold 5,000pps.
| | [Tags] | 4_THREAD_NOHTT_RSS_2 | MULTI_THREAD
| | ${framesize}= | Set Variable | 9000
| | ${min_rate}= | Set Variable | 5000
| | ${max_rate}= | Set Variable | ${10Ge_linerate_pps_9000B}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '4' worker threads and rss '2' without HTT to all DUTs
| | And   Add all PCI devices to all DUTs
| | And   Apply startup configuration on all VPP DUTs
| | And   L2 bridge domain initialized in a 3-node circular topology
| | Then Find NDR using binary search and pps | ${framesize} | ${binary_min}
| | ...                                       | ${binary_max} | 3-node-bridge
| | ...                                       | ${min_rate} | ${max_rate}
| | ...                                       | ${threshold}