summaryrefslogtreecommitdiffstats
path: root/src/vnet/ip/ip6_packet.h
blob: 2ba55b75e09c45e72e434994e74bb87a75e14a6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * ip6/packet.h: ip6 packet format
 *
 * Copyright (c) 2008 Eliot Dresselhaus
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#ifndef included_ip6_packet_h
#define included_ip6_packet_h

#include <vnet/tcp/tcp_packet.h>
#include <vnet/ip/ip4_packet.h>

typedef union
{
  u8 as_u8[16];
  u16 as_u16[8];
  u32 as_u32[4];
  u64 as_u64[2];
  uword as_uword[16 / sizeof (uword)];
}
ip6_address_t;

typedef struct
{
  ip6_address_t addr, mask;
} ip6_address_and_mask_t;

/* Packed so that the mhash key doesn't include uninitialized pad bytes */
/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
  /* IP address must be first for ip_interface_address_get_address() to work */
  ip6_address_t ip6_addr;
  u32 fib_index;
}) ip6_address_fib_t;
/* *INDENT-ON* */

always_inline void
ip6_addr_fib_init (ip6_address_fib_t * addr_fib,
		   const ip6_address_t * address, u32 fib_index)
{
  addr_fib->ip6_addr = *address;
  addr_fib->fib_index = fib_index;
}

/* Special addresses:
   unspecified		::/128
   loopback		::1/128
   global unicast       2000::/3
   unique local unicast fc00::/7
   link local unicast	fe80::/10
   multicast		ff00::/8
   ietf reserved	everything else. */

#define foreach_ip6_multicast_address_scope	\
  _ (loopback, 0x1)				\
  _ (link_local, 0x2)				\
  _ (admin_local, 0x4)				\
  _ (site_local, 0x5)				\
  _ (organization_local, 0x8)			\
  _ (global, 0xe)

#define foreach_ip6_multicast_link_local_group_id	\
  _ (all_hosts, 0x1)					\
  _ (all_routers, 0x2)					\
  _ (rip_routers, 0x9)					\
  _ (eigrp_routers, 0xa)				\
  _ (pim_routers, 0xd)                            \
 _ (mldv2_routers, 0x16)

typedef enum
{
#define _(f,n) IP6_MULTICAST_SCOPE_##f = n,
  foreach_ip6_multicast_address_scope
#undef _
} ip6_multicast_address_scope_t;

typedef enum
{
#define _(f,n) IP6_MULTICAST_GROUP_ID_##f = n,
  foreach_ip6_multicast_link_local_group_id
#undef _
} ip6_multicast_link_local_group_id_t;

always_inline uword
ip6_address_is_multicast (const ip6_address_t * a)
{
  return a->as_u8[0] == 0xff;
}

always_inline void
ip6_address_copy (ip6_address_t * dst, const ip6_address_t * src)
{
  dst->as_u64[0] = src->as_u64[0];
  dst->as_u64[1] = src->as_u64[1];
}

always_inline void
ip6_set_reserved_multicast_address (ip6_address_t * a,
				    ip6_multicast_address_scope_t scope,
				    u16 id)
{
  a->as_u64[0] = a->as_u64[1] = 0;
  a->as_u16[0] = clib_host_to_net_u16 (0xff00 | scope);
  a->as_u16[7] = clib_host_to_net_u16 (id);
}

always_inline void
ip6_set_solicited_node_multicast_address (ip6_address_t * a, u32 id)
{
  /* 0xff02::1:ffXX:XXXX. */
  a->as_u64[0] = a->as_u64[1] = 0;
  a->as_u16[0] = clib_host_to_net_u16 (0xff02);
  a->as_u8[11] = 1;
  ASSERT ((id >> 24) == 0);
  id |= 0xff << 24;
  a->as_u32[3] = clib_host_to_net_u32 (id);
}

always_inline void
ip6_multicast_ethernet_address (u8 * ethernet_address, u32 group_id)
{
  ethernet_address[0] = 0x33;
  ethernet_address[1] = 0x33;
  ethernet_address[2] = ((group_id >> 24) & 0xff);
  ethernet_address[3] = ((group_id >> 16) & 0xff);
  ethernet_address[4] = ((group_id >> 8) & 0xff);
  ethernet_address[5] = ((group_id >> 0) & 0xff);
}

always_inline uword
ip6_address_is_equal (const ip6_address_t * a, const ip6_address_t * b)
{
  int i;
  for (i = 0; i < ARRAY_LEN (a->as_uword); i++)
    if (a->as_uword[i] != b->as_uword[i])
      return 0;
  return 1;
}

always_inline uword
ip6_address_is_equal_masked (const ip6_address_t * a,
			     const ip6_address_t * b,
			     const ip6_address_t * mask)
{
  int i;
  for (i = 0; i < ARRAY_LEN (a->as_uword); i++)
    {
      uword a_masked, b_masked;
      a_masked = a->as_uword[i] & mask->as_uword[i];
      b_masked = b->as_uword[i] & mask->as_uword[i];

      if (a_masked != b_masked)
	return 0;
    }
  return 1;
}

always_inline void
ip6_address_mask (ip6_address_t * a, const ip6_address_t * mask)
{
  int i;
  for (i = 0; i < ARRAY_LEN (a->as_uword); i++)
    a->as_uword[i] &= mask->as_uword[i];
}

always_inline void
ip6_address_set_zero (ip6_address_t * a)
{
  int i;
  for (i = 0; i < ARRAY_LEN (a->as_uword); i++)
    a->as_uword[i] = 0;
}

always_inline void
ip6_address_mask_from_width (ip6_address_t * a, u32 width)
{
  int i, byte, bit, bitnum;
  ASSERT (width <= 128);
  clib_memset (a, 0, sizeof (a[0]));
  for (i = 0; i < width; i++)
    {
      bitnum = (7 - (i & 7));
      byte = i / 8;
      bit = 1 << bitnum;
      a->as_u8[byte] |= bit;
    }
}

always_inline uword
ip6_address_is_zero (const ip6_address_t * a)
{
  int i;
  for (i = 0; i < ARRAY_LEN (a->as_uword); i++)
    if (a->as_uword[i] != 0)
      return 0;
  return 1;
}

/* Check for unspecified address ::0 */
always_inline uword
ip6_address_is_unspecified (const ip6_address_t * a)
{
  return ip6_address_is_zero (a);
}

/* Check for loopback address ::1 */
always_inline uword
ip6_address_is_loopback (const ip6_address_t * a)
{
  return (a->as_u64[0] == 0 &&
	  a->as_u32[2] == 0 &&
	  a->as_u16[6] == 0 && a->as_u8[14] == 0 && a->as_u8[15] == 1);
}

/* Check for link local unicast fe80::/10. */
always_inline uword
ip6_address_is_link_local_unicast (const ip6_address_t * a)
{
  return a->as_u8[0] == 0xfe && (a->as_u8[1] & 0xc0) == 0x80;
}

/* Check for unique local unicast fc00::/7. */
always_inline uword
ip6_address_is_local_unicast (const ip6_address_t * a)
{
  return (a->as_u8[0] & 0xfe) == 0xfc;
}

/* Check for unique global unicast 2000::/3. */
always_inline uword
ip6_address_is_global_unicast (const ip6_address_t * a)
{
  return (a->as_u8[0] & 0xe0) == 0x20;
}

/* Check for solicited node multicast 0xff02::1:ff00:0/104 */
always_inline uword
ip6_is_solicited_node_multicast_address (const ip6_address_t * a)
{
  return (a->as_u32[0] == clib_host_to_net_u32 (0xff020000)
	  && a->as_u32[1] == 0
	  && a->as_u32[2] == clib_host_to_net_u32 (1)
	  && a->as_u8[12] == 0xff);
}

always_inline u32
ip6_address_hash_to_u32 (const ip6_address_t * a)
{
  return (a->as_u32[0] ^ a->as_u32[1] ^ a->as_u32[2] ^ a->as_u32[3]);
}

always_inline u64
ip6_address_hash_to_u64 (const ip6_address_t * a)
{
  return (a->as_u64[0] ^ a->as_u64[1]);
}

typedef struct
{
  /* 4 bit version, 8 bit traffic class and 20 bit flow label. */
  u32 ip_version_traffic_class_and_flow_label;

  /* Total packet length not including this header (but including
     any extension headers if present). */
  u16 payload_length;

  /* Protocol for next header. */
  u8 protocol;

  /* Hop limit decremented by router at each hop. */
  u8 hop_limit;

  /* Source and destination address. */
  ip6_address_t src_address, dst_address;
} ip6_header_t;

always_inline ip_dscp_t
ip6_traffic_class (const ip6_header_t * i)
{
  return (i->ip_version_traffic_class_and_flow_label & 0x0FF00000) >> 20;
}

static_always_inline ip_dscp_t
ip6_traffic_class_network_order (const ip6_header_t * ip6)
{
  return (clib_net_to_host_u32 (ip6->ip_version_traffic_class_and_flow_label)
	  & 0x0ff00000) >> 20;
}

static_always_inline ip_dscp_t
ip6_dscp_network_order (const ip6_header_t * ip6)
{
  return (clib_net_to_host_u32 (ip6->ip_version_traffic_class_and_flow_label)
	  & 0x0fc00000) >> 22;
}

static_always_inline ip_ecn_t
ip6_ecn_network_order (const ip6_header_t * ip6)
{
  return (clib_net_to_host_u32 (ip6->ip_version_traffic_class_and_flow_label)
	  & 0x00300000) >> 20;
}

static_always_inline void
ip6_set_traffic_class_network_order (ip6_header_t * ip6, ip_dscp_t dscp)
{
  u32 tmp =
    clib_net_to_host_u32 (ip6->ip_version_traffic_class_and_flow_label);
  tmp &= 0xf00fffff;
  tmp |= (dscp << 20);
  ip6->ip_version_traffic_class_and_flow_label = clib_host_to_net_u32 (tmp);
}

static_always_inline void
ip6_set_dscp_network_order (ip6_header_t * ip6, ip_dscp_t dscp)
{
  u32 tmp =
    clib_net_to_host_u32 (ip6->ip_version_traffic_class_and_flow_label);
  tmp &= 0xf03fffff;
  tmp |= (dscp << 22);
  ip6->ip_version_traffic_class_and_flow_label = clib_host_to_net_u32 (tmp);
}

static_always_inline void
ip6_set_ecn_network_order (ip6_header_t * ip6, ip_ecn_t ecn)
{
  u32 tmp =
    clib_net_to_host_u32 (ip6->ip_version_traffic_class_and_flow_label);
  tmp &= 0xffcfffff;
  tmp |= (ecn << 20);
  ip6->ip_version_traffic_class_and_flow_label = clib_host_to_net_u32 (tmp);
}

always_inline void *
ip6_next_header (ip6_header_t * i)
{
  return (void *) (i + 1);
}

always_inline void
ip6_copy_header (ip6_header_t * dst, const ip6_header_t * src)
{
  dst->ip_version_traffic_class_and_flow_label =
    src->ip_version_traffic_class_and_flow_label;
  dst->payload_length = src->payload_length;
  dst->protocol = src->protocol;
  dst->hop_limit = src->hop_limit;

  dst->src_address.as_uword[0] = src->src_address.as_uword[0];
  dst->src_address.as_uword[1] = src->src_address.as_uword[1];
  dst->dst_address.as_uword[0] = src->dst_address.as_uword[0];
  dst->dst_address.as_uword[1] = src->dst_address.as_uword[1];
}

always_inline void
ip6_tcp_reply_x1 (ip6_header_t * ip0, tcp_header_t * tcp0)
{
  {
    ip6_address_t src0, dst0;

    src0 = ip0->src_address;
    dst0 = ip0->dst_address;
    ip0->src_address = dst0;
    ip0->dst_address = src0;
  }

  {
    u16 src0, dst0;

    src0 = tcp0->src;
    dst0 = tcp0->dst;
    tcp0->src = dst0;
    tcp0->dst = src0;
  }
}

always_inline void
ip6_tcp_reply_x2 (ip6_header_t * ip0, ip6_header_t * ip1,
		  tcp_header_t * tcp0, tcp_header_t * tcp1)
{
  {
    ip6_address_t src0, dst0, src1, dst1;

    src0 = ip0->src_address;
    src1 = ip1->src_address;
    dst0 = ip0->dst_address;
    dst1 = ip1->dst_address;
    ip0->src_address = dst0;
    ip1->src_address = dst1;
    ip0->dst_address = src0;
    ip1->dst_address = src1;
  }

  {
    u16 src0, dst0, src1, dst1;

    src0 = tcp0->src;
    src1 = tcp1->src;
    dst0 = tcp0->dst;
    dst1 = tcp1->dst;
    tcp0->src = dst0;
    tcp1->src = dst1;
    tcp0->dst = src0;
    tcp1->dst = src1;
  }
}


/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
  u8 data;
}) ip6_pad1_option_t;
/* *INDENT-ON* */

/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
  u8 type;
  u8 len;
  u8 data[0];
}) ip6_padN_option_t;
/* *INDENT-ON* */

/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
#define IP6_MLDP_ALERT_TYPE  0x5
  u8 type;
  u8 len;
  u16 value;
}) ip6_router_alert_option_t;
/* *INDENT-ON* */

/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
  u8 next_hdr;
  /* Length of this header plus option data in 8 byte units. */
  u8 n_data_u64s;
}) ip6_ext_header_t;
/* *INDENT-ON* */

#define foreach_ext_hdr_type \
  _(IP6_HOP_BY_HOP_OPTIONS) \
  _(IPV6_ROUTE) \
  _(IPV6_FRAGMENTATION) \
  _(IPSEC_ESP) \
  _(IPSEC_AH) \
  _(IP6_DESTINATION_OPTIONS) \
  _(MOBILITY) \
  _(HIP) \
  _(SHIM6)

always_inline u8
ip6_ext_hdr (u8 nexthdr)
{
#ifdef CLIB_HAVE_VEC128
  static const u8x16 ext_hdr_types = {
#define _(x) IP_PROTOCOL_##x,
    foreach_ext_hdr_type
#undef _
  };

  return !u8x16_is_all_zero (ext_hdr_types == u8x16_splat (nexthdr));
#else
  /*
   * find out if nexthdr is an extension header or a protocol
   */
  return 0
#define _(x) || (nexthdr == IP_PROTOCOL_##x)
    foreach_ext_hdr_type;
#undef _
#endif
}

#define ip6_ext_header_len(p)  ((((ip6_ext_header_t *)(p))->n_data_u64s+1) << 3)
#define ip6_ext_authhdr_len(p) ((((ip6_ext_header_t *)(p))->n_data_u64s+2) << 2)

always_inline void *
ip6_ext_next_header (ip6_ext_header_t * ext_hdr)
{
  return (void *) ((u8 *) ext_hdr + ip6_ext_header_len (ext_hdr));
}

always_inline int
vlib_object_within_buffer_data (vlib_main_t * vm, vlib_buffer_t * b,
				void *obj, size_t len)
{
  u8 *o = obj;
  if (o < b->data ||
      o + len > b->data + vlib_buffer_get_default_data_size (vm))
    return 0;
  return 1;
}

/*
 * find ipv6 extension header within ipv6 header within buffer b
 *
 * @param vm
 * @param b buffer to limit search to
 * @param ip6_header ipv6 header
 * @param header_type extension header type to search for
 * @param[out] prev_ext_header address of header preceding found header
 */
always_inline void *
ip6_ext_header_find (vlib_main_t * vm, vlib_buffer_t * b,
		     ip6_header_t * ip6_header, u8 header_type,
		     ip6_ext_header_t ** prev_ext_header)
{
  ip6_ext_header_t *prev = NULL;
  ip6_ext_header_t *result = NULL;
  if ((ip6_header)->protocol == header_type)
    {
      result = (void *) (ip6_header + 1);
      if (!vlib_object_within_buffer_data (vm, b, result,
					   ip6_ext_header_len (result)))
	{
	  result = NULL;
	}
    }
  else
    {
      result = NULL;
      prev = (void *) (ip6_header + 1);
      while (ip6_ext_hdr (prev->next_hdr) && prev->next_hdr != header_type)
	{
	  prev = ip6_ext_next_header (prev);
	  if (!vlib_object_within_buffer_data (vm, b, prev,
					       ip6_ext_header_len (prev)))
	    {
	      prev = NULL;
	      break;
	    }
	}
      if (prev && (prev->next_hdr == header_type))
	{
	  result = ip6_ext_next_header (prev);
	  if (!vlib_object_within_buffer_data (vm, b, result,
					       ip6_ext_header_len (result)))
	    {
	      result = NULL;
	    }
	}
    }
  if (prev_ext_header)
    {
      *prev_ext_header = prev;
    }
  return result;
}

/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
  u8 next_hdr;
  /* Length of this header plus option data in 8 byte units. */
  u8 n_data_u64s;
  u8 data[0];
}) ip6_hop_by_hop_ext_t;
/* *INDENT-ON* */

/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
  u8 next_hdr;
  u8 rsv;
  u16 fragment_offset_and_more;
  u32 identification;
}) ip6_frag_hdr_t;
/* *INDENT-ON* */

#define ip6_frag_hdr_offset(hdr) \
  (clib_net_to_host_u16((hdr)->fragment_offset_and_more) >> 3)

#define ip6_frag_hdr_offset_bytes(hdr) \
  (8 * ip6_frag_hdr_offset(hdr))

#define ip6_frag_hdr_more(hdr) \
  (clib_net_to_host_u16((hdr)->fragment_offset_and_more) & 0x1)

#define ip6_frag_hdr_offset_and_more(offset, more) \
  clib_host_to_net_u16(((offset) << 3) + !!(more))

#endif /* included_ip6_packet_h */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
ss="p">} /* allocate tailq entry */ te = rte_zmalloc("LPM_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, LPM, "Failed to allocate tailq entry\n"); goto exit; } /* Allocate memory to store the LPM data structures. */ lpm = (struct rte_lpm_v20 *)rte_zmalloc_socket(mem_name, mem_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm == NULL) { RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); rte_free(te); goto exit; } /* Save user arguments. */ lpm->max_rules = max_rules; snprintf(lpm->name, sizeof(lpm->name), "%s", name); te->data = (void *) lpm; TAILQ_INSERT_TAIL(lpm_list, te, next); exit: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return lpm; } VERSION_SYMBOL(rte_lpm_create, _v20, 2.0); struct rte_lpm * rte_lpm_create_v1604(const char *name, int socket_id, const struct rte_lpm_config *config) { char mem_name[RTE_LPM_NAMESIZE]; struct rte_lpm *lpm = NULL; struct rte_tailq_entry *te; uint32_t mem_size, rules_size, tbl8s_size; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); RTE_BUILD_BUG_ON(sizeof(struct rte_lpm_tbl_entry) != 4); /* Check user arguments. */ if ((name == NULL) || (socket_id < -1) || (config->max_rules == 0) || config->number_tbl8s > RTE_LPM_MAX_TBL8_NUM_GROUPS) { rte_errno = EINVAL; return NULL; } snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); /* Determine the amount of memory to allocate. */ mem_size = sizeof(*lpm); rules_size = sizeof(struct rte_lpm_rule) * config->max_rules; tbl8s_size = (sizeof(struct rte_lpm_tbl_entry) * RTE_LPM_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* guarantee there's no existing */ TAILQ_FOREACH(te, lpm_list, next) { lpm = (struct rte_lpm *) te->data; if (strncmp(name, lpm->name, RTE_LPM_NAMESIZE) == 0) break; } lpm = NULL; if (te != NULL) { rte_errno = EEXIST; goto exit; } /* allocate tailq entry */ te = rte_zmalloc("LPM_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, LPM, "Failed to allocate tailq entry\n"); goto exit; } /* Allocate memory to store the LPM data structures. */ lpm = (struct rte_lpm *)rte_zmalloc_socket(mem_name, mem_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm == NULL) { RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); rte_free(te); goto exit; } lpm->rules_tbl = (struct rte_lpm_rule *)rte_zmalloc_socket(NULL, (size_t)rules_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm->rules_tbl == NULL) { RTE_LOG(ERR, LPM, "LPM rules_tbl memory allocation failed\n"); rte_free(lpm); lpm = NULL; rte_free(te); goto exit; } lpm->tbl8 = (struct rte_lpm_tbl_entry *)rte_zmalloc_socket(NULL, (size_t)tbl8s_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm->tbl8 == NULL) { RTE_LOG(ERR, LPM, "LPM tbl8 memory allocation failed\n"); rte_free(lpm->rules_tbl); rte_free(lpm); lpm = NULL; rte_free(te); goto exit; } /* Save user arguments. */ lpm->max_rules = config->max_rules; lpm->number_tbl8s = config->number_tbl8s; snprintf(lpm->name, sizeof(lpm->name), "%s", name); te->data = (void *) lpm; TAILQ_INSERT_TAIL(lpm_list, te, next); exit: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return lpm; } BIND_DEFAULT_SYMBOL(rte_lpm_create, _v1604, 16.04); MAP_STATIC_SYMBOL( struct rte_lpm *rte_lpm_create(const char *name, int socket_id, const struct rte_lpm_config *config), rte_lpm_create_v1604); /* * Deallocates memory for given LPM table. */ void rte_lpm_free_v20(struct rte_lpm_v20 *lpm) { struct rte_lpm_list *lpm_list; struct rte_tailq_entry *te; /* Check user arguments. */ if (lpm == NULL) return; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find our tailq entry */ TAILQ_FOREACH(te, lpm_list, next) { if (te->data == (void *) lpm) break; } if (te != NULL) TAILQ_REMOVE(lpm_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_free(lpm); rte_free(te); } VERSION_SYMBOL(rte_lpm_free, _v20, 2.0); void rte_lpm_free_v1604(struct rte_lpm *lpm) { struct rte_lpm_list *lpm_list; struct rte_tailq_entry *te; /* Check user arguments. */ if (lpm == NULL) return; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find our tailq entry */ TAILQ_FOREACH(te, lpm_list, next) { if (te->data == (void *) lpm) break; } if (te != NULL) TAILQ_REMOVE(lpm_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_free(lpm->tbl8); rte_free(lpm->rules_tbl); rte_free(lpm); rte_free(te); } BIND_DEFAULT_SYMBOL(rte_lpm_free, _v1604, 16.04); MAP_STATIC_SYMBOL(void rte_lpm_free(struct rte_lpm *lpm), rte_lpm_free_v1604); /* * Adds a rule to the rule table. * * NOTE: The rule table is split into 32 groups. Each group contains rules that * apply to a specific prefix depth (i.e. group 1 contains rules that apply to * prefixes with a depth of 1 etc.). In the following code (depth - 1) is used * to refer to depth 1 because even though the depth range is 1 - 32, depths * are stored in the rule table from 0 - 31. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static inline int32_t rule_add_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, uint8_t next_hop) { uint32_t rule_gindex, rule_index, last_rule; int i; VERIFY_DEPTH(depth); /* Scan through rule group to see if rule already exists. */ if (lpm->rule_info[depth - 1].used_rules > 0) { /* rule_gindex stands for rule group index. */ rule_gindex = lpm->rule_info[depth - 1].first_rule; /* Initialise rule_index to point to start of rule group. */ rule_index = rule_gindex; /* Last rule = Last used rule in this rule group. */ last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; for (; rule_index < last_rule; rule_index++) { /* If rule already exists update its next_hop and return. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) { lpm->rules_tbl[rule_index].next_hop = next_hop; return rule_index; } } if (rule_index == lpm->max_rules) return -ENOSPC; } else { /* Calculate the position in which the rule will be stored. */ rule_index = 0; for (i = depth - 1; i > 0; i--) { if (lpm->rule_info[i - 1].used_rules > 0) { rule_index = lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules; break; } } if (rule_index == lpm->max_rules) return -ENOSPC; lpm->rule_info[depth - 1].first_rule = rule_index; } /* Make room for the new rule in the array. */ for (i = RTE_LPM_MAX_DEPTH; i > depth; i--) { if (lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules == lpm->max_rules) return -ENOSPC; if (lpm->rule_info[i - 1].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules] = lpm->rules_tbl[lpm->rule_info[i - 1].first_rule]; lpm->rule_info[i - 1].first_rule++; } } /* Add the new rule. */ lpm->rules_tbl[rule_index].ip = ip_masked; lpm->rules_tbl[rule_index].next_hop = next_hop; /* Increment the used rules counter for this rule group. */ lpm->rule_info[depth - 1].used_rules++; return rule_index; } static inline int32_t rule_add_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, uint32_t next_hop) { uint32_t rule_gindex, rule_index, last_rule; int i; VERIFY_DEPTH(depth); /* Scan through rule group to see if rule already exists. */ if (lpm->rule_info[depth - 1].used_rules > 0) { /* rule_gindex stands for rule group index. */ rule_gindex = lpm->rule_info[depth - 1].first_rule; /* Initialise rule_index to point to start of rule group. */ rule_index = rule_gindex; /* Last rule = Last used rule in this rule group. */ last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; for (; rule_index < last_rule; rule_index++) { /* If rule already exists update its next_hop and return. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) { lpm->rules_tbl[rule_index].next_hop = next_hop; return rule_index; } } if (rule_index == lpm->max_rules) return -ENOSPC; } else { /* Calculate the position in which the rule will be stored. */ rule_index = 0; for (i = depth - 1; i > 0; i--) { if (lpm->rule_info[i - 1].used_rules > 0) { rule_index = lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules; break; } } if (rule_index == lpm->max_rules) return -ENOSPC; lpm->rule_info[depth - 1].first_rule = rule_index; } /* Make room for the new rule in the array. */ for (i = RTE_LPM_MAX_DEPTH; i > depth; i--) { if (lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules == lpm->max_rules) return -ENOSPC; if (lpm->rule_info[i - 1].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules] = lpm->rules_tbl[lpm->rule_info[i - 1].first_rule]; lpm->rule_info[i - 1].first_rule++; } } /* Add the new rule. */ lpm->rules_tbl[rule_index].ip = ip_masked; lpm->rules_tbl[rule_index].next_hop = next_hop; /* Increment the used rules counter for this rule group. */ lpm->rule_info[depth - 1].used_rules++; return rule_index; } /* * Delete a rule from the rule table. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static inline void rule_delete_v20(struct rte_lpm_v20 *lpm, int32_t rule_index, uint8_t depth) { int i; VERIFY_DEPTH(depth); lpm->rules_tbl[rule_index] = lpm->rules_tbl[lpm->rule_info[depth - 1].first_rule + lpm->rule_info[depth - 1].used_rules - 1]; for (i = depth; i < RTE_LPM_MAX_DEPTH; i++) { if (lpm->rule_info[i].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i].first_rule - 1] = lpm->rules_tbl[lpm->rule_info[i].first_rule + lpm->rule_info[i].used_rules - 1]; lpm->rule_info[i].first_rule--; } } lpm->rule_info[depth - 1].used_rules--; } static inline void rule_delete_v1604(struct rte_lpm *lpm, int32_t rule_index, uint8_t depth) { int i; VERIFY_DEPTH(depth); lpm->rules_tbl[rule_index] = lpm->rules_tbl[lpm->rule_info[depth - 1].first_rule + lpm->rule_info[depth - 1].used_rules - 1]; for (i = depth; i < RTE_LPM_MAX_DEPTH; i++) { if (lpm->rule_info[i].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i].first_rule - 1] = lpm->rules_tbl[lpm->rule_info[i].first_rule + lpm->rule_info[i].used_rules - 1]; lpm->rule_info[i].first_rule--; } } lpm->rule_info[depth - 1].used_rules--; } /* * Finds a rule in rule table. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static inline int32_t rule_find_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth) { uint32_t rule_gindex, last_rule, rule_index; VERIFY_DEPTH(depth); rule_gindex = lpm->rule_info[depth - 1].first_rule; last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; /* Scan used rules at given depth to find rule. */ for (rule_index = rule_gindex; rule_index < last_rule; rule_index++) { /* If rule is found return the rule index. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) return rule_index; } /* If rule is not found return -EINVAL. */ return -EINVAL; } static inline int32_t rule_find_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth) { uint32_t rule_gindex, last_rule, rule_index; VERIFY_DEPTH(depth); rule_gindex = lpm->rule_info[depth - 1].first_rule; last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; /* Scan used rules at given depth to find rule. */ for (rule_index = rule_gindex; rule_index < last_rule; rule_index++) { /* If rule is found return the rule index. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) return rule_index; } /* If rule is not found return -EINVAL. */ return -EINVAL; } /* * Find, clean and allocate a tbl8. */ static inline int32_t tbl8_alloc_v20(struct rte_lpm_tbl_entry_v20 *tbl8) { uint32_t group_idx; /* tbl8 group index. */ struct rte_lpm_tbl_entry_v20 *tbl8_entry; /* Scan through tbl8 to find a free (i.e. INVALID) tbl8 group. */ for (group_idx = 0; group_idx < RTE_LPM_TBL8_NUM_GROUPS; group_idx++) { tbl8_entry = &tbl8[group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES]; /* If a free tbl8 group is found clean it and set as VALID. */ if (!tbl8_entry->valid_group) { memset(&tbl8_entry[0], 0, RTE_LPM_TBL8_GROUP_NUM_ENTRIES * sizeof(tbl8_entry[0])); tbl8_entry->valid_group = VALID; /* Return group index for allocated tbl8 group. */ return group_idx; } } /* If there are no tbl8 groups free then return error. */ return -ENOSPC; } static inline int32_t tbl8_alloc_v1604(struct rte_lpm_tbl_entry *tbl8, uint32_t number_tbl8s) { uint32_t group_idx; /* tbl8 group index. */ struct rte_lpm_tbl_entry *tbl8_entry; /* Scan through tbl8 to find a free (i.e. INVALID) tbl8 group. */ for (group_idx = 0; group_idx < number_tbl8s; group_idx++) { tbl8_entry = &tbl8[group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES]; /* If a free tbl8 group is found clean it and set as VALID. */ if (!tbl8_entry->valid_group) { memset(&tbl8_entry[0], 0, RTE_LPM_TBL8_GROUP_NUM_ENTRIES * sizeof(tbl8_entry[0])); tbl8_entry->valid_group = VALID; /* Return group index for allocated tbl8 group. */ return group_idx; } } /* If there are no tbl8 groups free then return error. */ return -ENOSPC; } static inline void tbl8_free_v20(struct rte_lpm_tbl_entry_v20 *tbl8, uint32_t tbl8_group_start) { /* Set tbl8 group invalid*/ tbl8[tbl8_group_start].valid_group = INVALID; } static inline void tbl8_free_v1604(struct rte_lpm_tbl_entry *tbl8, uint32_t tbl8_group_start) { /* Set tbl8 group invalid*/ tbl8[tbl8_group_start].valid_group = INVALID; } static inline int32_t add_depth_small_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t next_hop) { uint32_t tbl24_index, tbl24_range, tbl8_index, tbl8_group_end, i, j; /* Calculate the index into Table24. */ tbl24_index = ip >> 8; tbl24_range = depth_to_range(depth); for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { /* * For invalid OR valid and non-extended tbl 24 entries set * entry. */ if (!lpm->tbl24[i].valid || (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth)) { struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { .valid = VALID, .valid_group = 0, .depth = depth, }; new_tbl24_entry.next_hop = next_hop; /* Setting tbl24 entry in one go to avoid race * conditions */ lpm->tbl24[i] = new_tbl24_entry; continue; } if (lpm->tbl24[i].valid_group == 1) { /* If tbl24 entry is valid and extended calculate the * index into tbl8. */ tbl8_index = lpm->tbl24[i].group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < tbl8_group_end; j++) { if (!lpm->tbl8[j].valid || lpm->tbl8[j].depth <= depth) { struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = depth, }; new_tbl8_entry.next_hop = next_hop; /* * Setting tbl8 entry in one go to avoid * race conditions */ lpm->tbl8[j] = new_tbl8_entry; continue; } } } } return 0; } static inline int32_t add_depth_small_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop) { #define group_idx next_hop uint32_t tbl24_index, tbl24_range, tbl8_index, tbl8_group_end, i, j; /* Calculate the index into Table24. */ tbl24_index = ip >> 8; tbl24_range = depth_to_range(depth); for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { /* * For invalid OR valid and non-extended tbl 24 entries set * entry. */ if (!lpm->tbl24[i].valid || (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth)) { struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = next_hop, .valid = VALID, .valid_group = 0, .depth = depth, }; /* Setting tbl24 entry in one go to avoid race * conditions */ lpm->tbl24[i] = new_tbl24_entry; continue; } if (lpm->tbl24[i].valid_group == 1) { /* If tbl24 entry is valid and extended calculate the * index into tbl8. */ tbl8_index = lpm->tbl24[i].group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < tbl8_group_end; j++) { if (!lpm->tbl8[j].valid || lpm->tbl8[j].depth <= depth) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = depth, .next_hop = next_hop, }; /* * Setting tbl8 entry in one go to avoid * race conditions */ lpm->tbl8[j] = new_tbl8_entry; continue; } } } } #undef group_idx return 0; } static inline int32_t add_depth_big_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, uint8_t next_hop) { uint32_t tbl24_index; int32_t tbl8_group_index, tbl8_group_start, tbl8_group_end, tbl8_index, tbl8_range, i; tbl24_index = (ip_masked >> 8); tbl8_range = depth_to_range(depth); if (!lpm->tbl24[tbl24_index].valid) { /* Search for a free tbl8 group. */ tbl8_group_index = tbl8_alloc_v20(lpm->tbl8); /* Check tbl8 allocation was successful. */ if (tbl8_group_index < 0) { return tbl8_group_index; } /* Find index into tbl8 and range. */ tbl8_index = (tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES) + (ip_masked & 0xFF); /* Set tbl8 entry. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; lpm->tbl8[i].valid = VALID; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { { .group_idx = (uint8_t)tbl8_group_index, }, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } /* If valid entry but not extended calculate the index into Table8. */ else if (lpm->tbl24[tbl24_index].valid_group == 0) { /* Search for free tbl8 group. */ tbl8_group_index = tbl8_alloc_v20(lpm->tbl8); if (tbl8_group_index < 0) { return tbl8_group_index; } tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* Populate new tbl8 with tbl24 value. */ for (i = tbl8_group_start; i < tbl8_group_end; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = lpm->tbl24[tbl24_index].depth; lpm->tbl8[i].next_hop = lpm->tbl24[tbl24_index].next_hop; } tbl8_index = tbl8_group_start + (ip_masked & 0xFF); /* Insert new rule into the tbl8 entry. */ for (i = tbl8_index; i < tbl8_index + tbl8_range; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go. */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { { .group_idx = (uint8_t)tbl8_group_index, }, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } else { /* * If it is valid, extended entry calculate the index into tbl8. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (!lpm->tbl8[i].valid || lpm->tbl8[i].depth <= depth) { struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .depth = depth, .valid_group = lpm->tbl8[i].valid_group, }; new_tbl8_entry.next_hop = next_hop; /* * Setting tbl8 entry in one go to avoid race * condition */ lpm->tbl8[i] = new_tbl8_entry; continue; } } } return 0; } static inline int32_t add_depth_big_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, uint32_t next_hop) { #define group_idx next_hop uint32_t tbl24_index; int32_t tbl8_group_index, tbl8_group_start, tbl8_group_end, tbl8_index, tbl8_range, i; tbl24_index = (ip_masked >> 8); tbl8_range = depth_to_range(depth); if (!lpm->tbl24[tbl24_index].valid) { /* Search for a free tbl8 group. */ tbl8_group_index = tbl8_alloc_v1604(lpm->tbl8, lpm->number_tbl8s); /* Check tbl8 allocation was successful. */ if (tbl8_group_index < 0) { return tbl8_group_index; } /* Find index into tbl8 and range. */ tbl8_index = (tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES) + (ip_masked & 0xFF); /* Set tbl8 entry. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; lpm->tbl8[i].valid = VALID; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go */ struct rte_lpm_tbl_entry new_tbl24_entry = { .group_idx = (uint8_t)tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } /* If valid entry but not extended calculate the index into Table8. */ else if (lpm->tbl24[tbl24_index].valid_group == 0) { /* Search for free tbl8 group. */ tbl8_group_index = tbl8_alloc_v1604(lpm->tbl8, lpm->number_tbl8s); if (tbl8_group_index < 0) { return tbl8_group_index; } tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* Populate new tbl8 with tbl24 value. */ for (i = tbl8_group_start; i < tbl8_group_end; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = lpm->tbl24[tbl24_index].depth; lpm->tbl8[i].next_hop = lpm->tbl24[tbl24_index].next_hop; } tbl8_index = tbl8_group_start + (ip_masked & 0xFF); /* Insert new rule into the tbl8 entry. */ for (i = tbl8_index; i < tbl8_index + tbl8_range; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .group_idx = (uint8_t)tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } else { /* * If it is valid, extended entry calculate the index into tbl8. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (!lpm->tbl8[i].valid || lpm->tbl8[i].depth <= depth) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = depth, .next_hop = next_hop, .valid_group = lpm->tbl8[i].valid_group, }; /* * Setting tbl8 entry in one go to avoid race * condition */ lpm->tbl8[i] = new_tbl8_entry; continue; } } } #undef group_idx return 0; } /* * Add a route */ int rte_lpm_add_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t next_hop) { int32_t rule_index, status = 0; uint32_t ip_masked; /* Check user arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; ip_masked = ip & depth_to_mask(depth); /* Add the rule to the rule table. */ rule_index = rule_add_v20(lpm, ip_masked, depth, next_hop); /* If the is no space available for new rule return error. */ if (rule_index < 0) { return rule_index; } if (depth <= MAX_DEPTH_TBL24) { status = add_depth_small_v20(lpm, ip_masked, depth, next_hop); } else { /* If depth > RTE_LPM_MAX_DEPTH_TBL24 */ status = add_depth_big_v20(lpm, ip_masked, depth, next_hop); /* * If add fails due to exhaustion of tbl8 extensions delete * rule that was added to rule table. */ if (status < 0) { rule_delete_v20(lpm, rule_index, depth); return status; } } return 0; } VERSION_SYMBOL(rte_lpm_add, _v20, 2.0); int rte_lpm_add_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop) { int32_t rule_index, status = 0; uint32_t ip_masked; /* Check user arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; ip_masked = ip & depth_to_mask(depth); /* Add the rule to the rule table. */ rule_index = rule_add_v1604(lpm, ip_masked, depth, next_hop); /* If the is no space available for new rule return error. */ if (rule_index < 0) { return rule_index; } if (depth <= MAX_DEPTH_TBL24) { status = add_depth_small_v1604(lpm, ip_masked, depth, next_hop); } else { /* If depth > RTE_LPM_MAX_DEPTH_TBL24 */ status = add_depth_big_v1604(lpm, ip_masked, depth, next_hop); /* * If add fails due to exhaustion of tbl8 extensions delete * rule that was added to rule table. */ if (status < 0) { rule_delete_v1604(lpm, rule_index, depth); return status; } } return 0; } BIND_DEFAULT_SYMBOL(rte_lpm_add, _v1604, 16.04); MAP_STATIC_SYMBOL(int rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop), rte_lpm_add_v1604); /* * Look for a rule in the high-level rules table */ int rte_lpm_is_rule_present_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t *next_hop) { uint32_t ip_masked; int32_t rule_index; /* Check user arguments. */ if ((lpm == NULL) || (next_hop == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; /* Look for the rule using rule_find. */ ip_masked = ip & depth_to_mask(depth); rule_index = rule_find_v20(lpm, ip_masked, depth); if (rule_index >= 0) { *next_hop = lpm->rules_tbl[rule_index].next_hop; return 1; } /* If rule is not found return 0. */ return 0; } VERSION_SYMBOL(rte_lpm_is_rule_present, _v20, 2.0); int rte_lpm_is_rule_present_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t *next_hop) { uint32_t ip_masked; int32_t rule_index; /* Check user arguments. */ if ((lpm == NULL) || (next_hop == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; /* Look for the rule using rule_find. */ ip_masked = ip & depth_to_mask(depth); rule_index = rule_find_v1604(lpm, ip_masked, depth); if (rule_index >= 0) { *next_hop = lpm->rules_tbl[rule_index].next_hop; return 1; } /* If rule is not found return 0. */ return 0; } BIND_DEFAULT_SYMBOL(rte_lpm_is_rule_present, _v1604, 16.04); MAP_STATIC_SYMBOL(int rte_lpm_is_rule_present(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t *next_hop), rte_lpm_is_rule_present_v1604); static inline int32_t find_previous_rule_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t *sub_rule_depth) { int32_t rule_index; uint32_t ip_masked; uint8_t prev_depth; for (prev_depth = (uint8_t)(depth - 1); prev_depth > 0; prev_depth--) { ip_masked = ip & depth_to_mask(prev_depth); rule_index = rule_find_v20(lpm, ip_masked, prev_depth); if (rule_index >= 0) { *sub_rule_depth = prev_depth; return rule_index; } } return -1; } static inline int32_t find_previous_rule_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint8_t *sub_rule_depth) { int32_t rule_index; uint32_t ip_masked; uint8_t prev_depth; for (prev_depth = (uint8_t)(depth - 1); prev_depth > 0; prev_depth--) { ip_masked = ip & depth_to_mask(prev_depth); rule_index = rule_find_v1604(lpm, ip_masked, prev_depth); if (rule_index >= 0) { *sub_rule_depth = prev_depth; return rule_index; } } return -1; } static inline int32_t delete_depth_small_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { uint32_t tbl24_range, tbl24_index, tbl8_group_index, tbl8_index, i, j; /* Calculate the range and index into Table24. */ tbl24_range = depth_to_range(depth); tbl24_index = (ip_masked >> 8); /* * Firstly check the sub_rule_index. A -1 indicates no replacement rule * and a positive number indicates a sub_rule_index. */ if (sub_rule_index < 0) { /* * If no replacement rule exists then invalidate entries * associated with this rule. */ for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i].valid = INVALID; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j].valid = INVALID; } } } } else { /* * If a replacement rule exists then modify entries * associated with this rule. */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { {.next_hop = lpm->rules_tbl[sub_rule_index].next_hop,}, .valid = VALID, .valid_group = 0, .depth = sub_rule_depth, }; struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = sub_rule_depth, }; new_tbl8_entry.next_hop = lpm->rules_tbl[sub_rule_index].next_hop; for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i] = new_tbl24_entry; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j] = new_tbl8_entry; } } } } return 0; } static inline int32_t delete_depth_small_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { #define group_idx next_hop uint32_t tbl24_range, tbl24_index, tbl8_group_index, tbl8_index, i, j; /* Calculate the range and index into Table24. */ tbl24_range = depth_to_range(depth); tbl24_index = (ip_masked >> 8); /* * Firstly check the sub_rule_index. A -1 indicates no replacement rule * and a positive number indicates a sub_rule_index. */ if (sub_rule_index < 0) { /* * If no replacement rule exists then invalidate entries * associated with this rule. */ for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i].valid = INVALID; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j].valid = INVALID; } } } } else { /* * If a replacement rule exists then modify entries * associated with this rule. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = lpm->rules_tbl[sub_rule_index].next_hop, .valid = VALID, .valid_group = 0, .depth = sub_rule_depth, }; struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = sub_rule_depth, .next_hop = lpm->rules_tbl [sub_rule_index].next_hop, }; for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i] = new_tbl24_entry; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j] = new_tbl8_entry; } } } } #undef group_idx return 0; } /* * Checks if table 8 group can be recycled. * * Return of -EEXIST means tbl8 is in use and thus can not be recycled. * Return of -EINVAL means tbl8 is empty and thus can be recycled * Return of value > -1 means tbl8 is in use but has all the same values and * thus can be recycled */ static inline int32_t tbl8_recycle_check_v20(struct rte_lpm_tbl_entry_v20 *tbl8, uint32_t tbl8_group_start) { uint32_t tbl8_group_end, i; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* * Check the first entry of the given tbl8. If it is invalid we know * this tbl8 does not contain any rule with a depth < RTE_LPM_MAX_DEPTH * (As they would affect all entries in a tbl8) and thus this table * can not be recycled. */ if (tbl8[tbl8_group_start].valid) { /* * If first entry is valid check if the depth is less than 24 * and if so check the rest of the entries to verify that they * are all of this depth. */ if (tbl8[tbl8_group_start].depth <= MAX_DEPTH_TBL24) { for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].depth != tbl8[tbl8_group_start].depth) { return -EEXIST; } } /* If all entries are the same return the tb8 index */ return tbl8_group_start; } return -EEXIST; } /* * If the first entry is invalid check if the rest of the entries in * the tbl8 are invalid. */ for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].valid) return -EEXIST; } /* If no valid entries are found then return -EINVAL. */ return -EINVAL; } static inline int32_t tbl8_recycle_check_v1604(struct rte_lpm_tbl_entry *tbl8, uint32_t tbl8_group_start) { uint32_t tbl8_group_end, i; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* * Check the first entry of the given tbl8. If it is invalid we know * this tbl8 does not contain any rule with a depth < RTE_LPM_MAX_DEPTH * (As they would affect all entries in a tbl8) and thus this table * can not be recycled. */ if (tbl8[tbl8_group_start].valid) { /* * If first entry is valid check if the depth is less than 24 * and if so check the rest of the entries to verify that they * are all of this depth. */ if (tbl8[tbl8_group_start].depth <= MAX_DEPTH_TBL24) { for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].depth != tbl8[tbl8_group_start].depth) { return -EEXIST; } } /* If all entries are the same return the tb8 index */ return tbl8_group_start; } return -EEXIST; } /* * If the first entry is invalid check if the rest of the entries in * the tbl8 are invalid. */ for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].valid) return -EEXIST; } /* If no valid entries are found then return -EINVAL. */ return -EINVAL; } static inline int32_t delete_depth_big_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { uint32_t tbl24_index, tbl8_group_index, tbl8_group_start, tbl8_index, tbl8_range, i; int32_t tbl8_recycle_index; /* * Calculate the index into tbl24 and range. Note: All depths larger * than MAX_DEPTH_TBL24 are associated with only one tbl24 entry. */ tbl24_index = ip_masked >> 8; /* Calculate the index into tbl8 and range. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); tbl8_range = depth_to_range(depth); if (sub_rule_index < 0) { /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be removed or modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i].valid = INVALID; } } else { /* Set new tbl8 entry. */ struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .depth = sub_rule_depth, .valid_group = lpm->tbl8[tbl8_group_start].valid_group, }; new_tbl8_entry.next_hop = lpm->rules_tbl[sub_rule_index].next_hop; /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i] = new_tbl8_entry; } } /* * Check if there are any valid entries in this tbl8 group. If all * tbl8 entries are invalid we can free the tbl8 and invalidate the * associated tbl24 entry. */ tbl8_recycle_index = tbl8_recycle_check_v20(lpm->tbl8, tbl8_group_start); if (tbl8_recycle_index == -EINVAL) { /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index].valid = 0; tbl8_free_v20(lpm->tbl8, tbl8_group_start); } else if (tbl8_recycle_index > -1) { /* Update tbl24 entry. */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { { .next_hop = lpm->tbl8[tbl8_recycle_index].next_hop, }, .valid = VALID, .valid_group = 0, .depth = lpm->tbl8[tbl8_recycle_index].depth, }; /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index] = new_tbl24_entry; tbl8_free_v20(lpm->tbl8, tbl8_group_start); } return 0; } static inline int32_t delete_depth_big_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { #define group_idx next_hop uint32_t tbl24_index, tbl8_group_index, tbl8_group_start, tbl8_index, tbl8_range, i; int32_t tbl8_recycle_index; /* * Calculate the index into tbl24 and range. Note: All depths larger * than MAX_DEPTH_TBL24 are associated with only one tbl24 entry. */ tbl24_index = ip_masked >> 8; /* Calculate the index into tbl8 and range. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); tbl8_range = depth_to_range(depth); if (sub_rule_index < 0) { /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be removed or modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i].valid = INVALID; } } else { /* Set new tbl8 entry. */ struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = sub_rule_depth, .valid_group = lpm->tbl8[tbl8_group_start].valid_group, .next_hop = lpm->rules_tbl[sub_rule_index].next_hop, }; /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i] = new_tbl8_entry; } } /* * Check if there are any valid entries in this tbl8 group. If all * tbl8 entries are invalid we can free the tbl8 and invalidate the * associated tbl24 entry. */ tbl8_recycle_index = tbl8_recycle_check_v1604(lpm->tbl8, tbl8_group_start); if (tbl8_recycle_index == -EINVAL) { /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index].valid = 0; tbl8_free_v1604(lpm->tbl8, tbl8_group_start); } else if (tbl8_recycle_index > -1) { /* Update tbl24 entry. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = lpm->tbl8[tbl8_recycle_index].next_hop, .valid = VALID, .valid_group = 0, .depth = lpm->tbl8[tbl8_recycle_index].depth, }; /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index] = new_tbl24_entry; tbl8_free_v1604(lpm->tbl8, tbl8_group_start); } #undef group_idx return 0; } /* * Deletes a rule */ int rte_lpm_delete_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth) { int32_t rule_to_delete_index, sub_rule_index; uint32_t ip_masked; uint8_t sub_rule_depth; /* * Check input arguments. Note: IP must be a positive integer of 32 * bits in length therefore it need not be checked. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) { return -EINVAL; } ip_masked = ip & depth_to_mask(depth); /* * Find the index of the input rule, that needs to be deleted, in the * rule table. */ rule_to_delete_index = rule_find_v20(lpm, ip_masked, depth); /* * Check if rule_to_delete_index was found. If no rule was found the * function rule_find returns -EINVAL. */ if (rule_to_delete_index < 0) return -EINVAL; /* Delete the rule from the rule table. */ rule_delete_v20(lpm, rule_to_delete_index, depth); /* * Find rule to replace the rule_to_delete. If there is no rule to * replace the rule_to_delete we return -1 and invalidate the table * entries associated with this rule. */ sub_rule_depth = 0; sub_rule_index = find_previous_rule_v20(lpm, ip, depth, &sub_rule_depth); /* * If the input depth value is less than 25 use function * delete_depth_small otherwise use delete_depth_big. */ if (depth <= MAX_DEPTH_TBL24) { return delete_depth_small_v20(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } else { /* If depth > MAX_DEPTH_TBL24 */ return delete_depth_big_v20(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } } VERSION_SYMBOL(rte_lpm_delete, _v20, 2.0); int rte_lpm_delete_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth) { int32_t rule_to_delete_index, sub_rule_index; uint32_t ip_masked; uint8_t sub_rule_depth; /* * Check input arguments. Note: IP must be a positive integer of 32 * bits in length therefore it need not be checked. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) { return -EINVAL; } ip_masked = ip & depth_to_mask(depth); /* * Find the index of the input rule, that needs to be deleted, in the * rule table. */ rule_to_delete_index = rule_find_v1604(lpm, ip_masked, depth); /* * Check if rule_to_delete_index was found. If no rule was found the * function rule_find returns -EINVAL. */ if (rule_to_delete_index < 0) return -EINVAL; /* Delete the rule from the rule table. */ rule_delete_v1604(lpm, rule_to_delete_index, depth); /* * Find rule to replace the rule_to_delete. If there is no rule to * replace the rule_to_delete we return -1 and invalidate the table * entries associated with this rule. */ sub_rule_depth = 0; sub_rule_index = find_previous_rule_v1604(lpm, ip, depth, &sub_rule_depth); /* * If the input depth value is less than 25 use function * delete_depth_small otherwise use delete_depth_big. */ if (depth <= MAX_DEPTH_TBL24) { return delete_depth_small_v1604(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } else { /* If depth > MAX_DEPTH_TBL24 */ return delete_depth_big_v1604(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } } BIND_DEFAULT_SYMBOL(rte_lpm_delete, _v1604, 16.04); MAP_STATIC_SYMBOL(int rte_lpm_delete(struct rte_lpm *lpm, uint32_t ip, uint8_t depth), rte_lpm_delete_v1604); /* * Delete all rules from the LPM table. */ void rte_lpm_delete_all_v20(struct rte_lpm_v20 *lpm) { /* Zero rule information. */ memset(lpm->rule_info, 0, sizeof(lpm->rule_info)); /* Zero tbl24. */ memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); /* Zero tbl8. */ memset(lpm->tbl8, 0, sizeof(lpm->tbl8)); /* Delete all rules form the rules table. */ memset(lpm->rules_tbl, 0, sizeof(lpm->rules_tbl[0]) * lpm->max_rules); } VERSION_SYMBOL(rte_lpm_delete_all, _v20, 2.0); void rte_lpm_delete_all_v1604(struct rte_lpm *lpm) { /* Zero rule information. */ memset(lpm->rule_info, 0, sizeof(lpm->rule_info)); /* Zero tbl24. */ memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); /* Zero tbl8. */ memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) * RTE_LPM_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); /* Delete all rules form the rules table. */ memset(lpm->rules_tbl, 0, sizeof(lpm->rules_tbl[0]) * lpm->max_rules); } BIND_DEFAULT_SYMBOL(rte_lpm_delete_all, _v1604, 16.04); MAP_STATIC_SYMBOL(void rte_lpm_delete_all(struct rte_lpm *lpm), rte_lpm_delete_all_v1604);