# IPFIX support {#ipfix}
VPP includes a high-performance IPFIX record exporter. This note
explains how to use the internal APIs to export IPFIX data, and how to
configure and send the required IPFIX templates.
As you'll see, a bit of typing is required.
## First: create an ipfix "report"
Include the flow report header file, fill out a @ref
vnet_flow_report_add_del_args_t structure, and call vnet_flow_report_add_del.
```{.c}
#include <vnet/ipfix-export/flow_report.h>
/* Defined in flow_report.h, of interest when constructing reports */
/* ipfix field definitions for a particular report */
typedef struct
{
u32 info_element;
u32 size;
} ipfix_report_element_t;
/* Report add/del argument structure */
typedef struct
{
/* Callback to flush current ipfix packet / frame */
vnet_flow_data_callback_t *flow_data_callback;
/* Callback to build the template packet rewrite string */
vnet_flow_rewrite_callback_t *rewrite_callback;
/* List of ipfix elements in the report */
ipfix_report_element_t *report_elements;
u32 n_report_elements;
/* Kept in flow report, used e.g. by flow classifier */
opaque_t opaque;
/* Add / delete a report */
int is_add;
/* Ipfix "domain-ID", see RFC, set as desired */
u32 domain_id;
/* ipfix packet source port, often set to UDP_DST_PORT_ipfix */
u16 src_port;
/* Set by ipfix infra, needed to send data packets */
u32 *stream_indexp;
} vnet_flow_report_add_del_args_t;
/* Private header file contents */
/* Report ipfix element definition */
#define foreach_simple_report_ipfix_element \
_(sourceIPv4Address, 4) \
_(destinationIPv4Address, 4) \
_(sourceTransportPort, 2) \
_(destinationTransportPort, 2) \
_(protocolIdentifier, 1) \
_(flowStartMicroseconds, 8) \
_(flowEndMicroseconds, 8)
static ipfix_report_element_t simple_report_elements[] = {
#define _(a,b) {a,b},
foreach_simple_report_ipfix_element
#undef _
};
typedef struct
{
/** Buffers and frames, per thread */
vlib_buffer_t **buffers_by_thread;
vlib_frame_t **frames_by_thread;
u32 *next_record_offset_by_thread;
/** Template ID's */
u16 *template_ids;
/** Time reference pair */
u64 usec_time_0;
f64 vlib_time_0;
/** Stream index */
u32 stream_index;
/* Convenience */
flow_report_main_t *flow_report_main;
vlib_main_t *vlib_main;
vnet_main_t *vnet_main;
} my_logging_main_t;
extern my_logging_main_t my_logging_main;
...
/* Recitations */
flow_report_main_t *frm = &flow_report_main;
my_logging_main_t *mlm = &my_logging_main;
vnet_flow_report_add_del_args_t a;
int rv;
u16 template_id;
...
/* Init function: set up time reference pair */
mlm->vlib_time_0 = vlib_time_now (vm);
mlm->milisecond_time_0 = unix_time_now_nsec () * 1e-6;
...
/* Create a report */
memset (&a, 0, sizeof (a));
a.is_add = 1 /* to enable the report */;
a.domain_id = 1 /* pick a domain ID */;
a.src_port = UDP_DST_PORT_ipfix /* src port for reports */;
/* Use the generic template packet rewrite string generator */
a.rewrite_callback = vnet_flow_rewrite_generic_callback;
/* Supply a list of ipfix report elements */
a.report_elements = simple_report_elements;
a.n_report_elements = ARRAY_LEN (simple_report_elements);
/* Pointer to the ipfix stream index, set by the report infra */
a.stream_indexp = &mlm->stream_index;
a.flow_data_callback = my_flow_data_callback;
/* Create the report */
rv = vnet_flow_report_add_del (frm, &a, &template_id);
if (rv)
oops...
/* Save the template-ID for later use */
mlm->template_id = template_id;
```
Several things are worth describing in more detail.
### vnet_flow_rewrite_generic_callback programming
This generic callback helps build ipfix template packets. When
registering an ipfix report, pass an (array, count)
of ipfix elements as shown above.
### my_flow_data_callback
The ipfix flow export infrastructure calls this callback to flush the
current ipfix packet; to make sure that ipfix data is not retained for
an unreasonably long period of time.
We typically code it as shown below, to call an application-specific
function with (uninteresting arguments), and "do_flush = 1":
```{.c}
vlib_frame_t *my_flow_data_callback
(flow_report_main_t * frm,
flow_report_t * fr,
vlib_frame_t * f,
u32 * to_next, u32 node_index)
{
my_buffer_flow_record (0, ... , 0, 1 /* do_flush */);
return f;
}
```
### my_flow_data_header
This function creates the packet header for an ipfix data packet
```{.c}
static inline void
my_flow_report_header (flow_report_main_t * frm,
vlib_buffer_t * b0, u32 * offset)
{
my_logging_main_t *mlm = &my_logging_main;
flow_report_stream_t *stream;
ip4_ipfix_template_packet_t *tp;
ipfix_message_header_t *h = 0;
ipfix_set_header_t *s = 0;
ip4_header_t *ip;
udp_header_t *udp;
stream = &frm->streams[mlm->stream_index];
b0->current_data = 0;
b0->current_length = sizeof (*ip) + sizeof (*udp) + sizeof (*h) +
sizeof (*s);
b0->flags |= (VLIB_BUFFER_TOTAL_LENGTH_VALID | VNET_BUFFER_F_FLOW_REPORT);
vnet_buffer (b0)->sw_if_index[VLIB_RX] = 0;
vnet_buffer (b0)->sw_if_index[VLIB_TX] = frm->fib_index;
tp = vlib_buffer_get_current (b0);
ip = (ip4_header_t *) & tp->ip4;
udp = (udp_header_t *) (ip + 1);
h = (ipfix_message_header_t *) (udp + 1);
s = (ipfix_set_header_t *) (h + 1);
ip->ip_version_and_header_length = 0x45;
ip->ttl = 254;
ip->protocol = IP_PROTOCOL_UDP;
ip->flags_and_fragment_offset = 0;
ip->src_address.as_u32 = frm->src_address.as_u32;
ip->dst_address.as_u32 = frm->ipfix_collector.as_u32;
udp->src_port = clib_host_to_net_u16 (stream->src_port);
udp->dst_port = clib_host_to_net_u16 (frm->collector_port);
udp->checksum = 0;
h->export_time = clib_host_to_net_u32 ((u32)
(((f64) frm->unix_time_0) +
(vlib_time_now (frm->vlib_main) -
frm->vlib_time_0)));
h->sequence_number = clib_host_to_net_u32 (stream->sequence_number++);
h->domain_id = clib_host_to_net_u32 (stream->domain_id);
*offset = (u32) (((u8 *) (s + 1)) - (u8 *) tp);
}
```
### fixup and transmit a flow record
```{.c}
static inline void
my_send_ipfix_pkt (flow_report_main_t * frm,
vlib_frame_t * f, vlib_buffer_t * b0, u16 template_id)
{
ip4_ipfix_template_packet_t *tp;
ipfix_message_header_t *h = 0;
ipfix_set_header_t *s = 0;
ip4_header_t *ip;
udp_header_t *udp;
vlib_main_t *vm = frm->vlib_main;
tp = vlib_buffer_get_current (b0);
ip = (ip4_header_t *) & tp->ip4;
udp = (udp_header_t *) (ip + 1);
h = (ipfix_message_header_t *) (udp + 1);
s = (ipfix_set_header_t *) (h + 1);
s->set_id_length = ipfix_set_id_length (template_id,
b0->current_length -
(sizeof (*ip) + sizeof (*udp) +
sizeof (*h)));
h->version_length = version_length (b0->current_length -
(sizeof (*ip) + sizeof (*udp)));
ip->length = clib_host_to_net_u16 (b0->current_length);
ip->checksum = ip4_header_checksum (ip);
udp->length = clib_host_to_net_u16 (b0->current_length - sizeof (*ip));
if (frm->udp_checksum)
{
udp->checksum = ip4_tcp_udp_compute_checksum (vm, b0, ip);
if (udp->checksum == 0)
udp->checksum = 0xffff;
}
ASSERT (ip->checksum == ip4_header_checksum (ip));
vlib_put_frame_to_node (vm, ip4_lookup_node.index, f);
}
```
### my_buffer_flow_record
This is the key routine which paints individual flow records into
an ipfix packet under construction. It's pretty straightforward
(albeit stateful) vpp data-plane code. The code shown below is
thread-safe by construction.
```{.c}
static inline void
my_buffer_flow_record_internal (my_flow_record_t * rp, int do_flush,
u32 thread_index)
{
vlib_main_t *vm = vlib_mains[thread_index];
my_logging_main_t *mlm = &jvp_ipfix_main;
flow_report_main_t *frm = &flow_report_main;
vlib_frame_t *f;
vlib_buffer_t *b0 = 0;
u32 bi0 = ~0;
u32 offset;
vlib_buffer_free_list_t *fl;
b0 = mlm->buffers_by_thread[thread_index];
if (PREDICT_FALSE (b0 == 0))
{
if (do_flush)
return;
if (vlib_buffer_alloc (vm, &bi0, 1) != 1)
{
clib_warning ("can't allocate ipfix data buffer");
return;
}
b0 = vlib_get_buffer (vm, bi0);
fl =
vlib_buffer_get_free_list (vm, VLIB_BUFFER_DEFAULT_FREE_LIST_INDEX);
vlib_buffer_init_for_free_list (b0, fl);
VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b0);
offset = 0;
mlm->buffers_by_thread[thread_index] = b0;
}
else
{
bi0 = vlib_get_buffer_index (vm, b0);
offset = mlm->next_record_offset_by_thread[thread_index];
}
f = mlm->frames_by_thread[thread_index];
if (PREDICT_FALSE (f == 0))
{
u32 *to_next;
f = vlib_get_frame_to_node (vm, ip4_lookup_node.index);
mlm->frames_by_thread[thread_index] = f;
to_next = vlib_frame_vector_args (f);
to_next[0] = bi0;
f->n_vectors = 1;
mlm->frames_by_thread[thread_index] = f;
}
if (PREDICT_FALSE (offset == 0))
my_flow_report_header (frm, b0, &offset);
if (PREDICT_TRUE (do_flush == 0))
{
/* Paint the new ipfix data record into the buffer */
clib_memcpy (b0->data + offset, rp, sizeof (*rp));
offset += sizeof (*rp);
b0->current_length += sizeof (*rp);
}
if (PREDICT_FALSE (do_flush || (offset + sizeof (*rp)) > frm->path_mtu))
{
/* Nothing to send? */
if (offset == 0)
return;
send_ipfix_pkt (frm, f, b0, mlm->template_ids[0]);
mlm->buffers_by_thread[thread_index] = 0;
mlm->frames_by_thread[thread_index] = 0;
offset = 0;
}
mlm->next_record_offset_by_thread[thread_index] = offset;
}
static void
my_buffer_flow_record (my_flow_record_t * rp, int do_flush)
{
u32 thread_index = vlib_get_thread_index();
my_buffer_flow_record_internal (rp, do_flush, thread_index);
}
```