1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __ESP_H__
#define __ESP_H__
#include <vnet/ip/ip.h>
#include <vnet/ipsec/ipsec.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/evp.h>
typedef struct
{
u32 spi;
u32 seq;
u8 data[0];
} esp_header_t;
typedef struct
{
u8 pad_length;
u8 next_header;
} esp_footer_t;
/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
ip4_header_t ip4;
esp_header_t esp;
}) ip4_and_esp_header_t;
/* *INDENT-ON* */
/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
ip6_header_t ip6;
esp_header_t esp;
}) ip6_and_esp_header_t;
/* *INDENT-ON* */
typedef struct
{
const EVP_CIPHER *type;
} esp_crypto_alg_t;
typedef struct
{
const EVP_MD *md;
u8 trunc_size;
} esp_integ_alg_t;
typedef struct
{
CLIB_CACHE_LINE_ALIGN_MARK (cacheline0);
EVP_CIPHER_CTX encrypt_ctx;
CLIB_CACHE_LINE_ALIGN_MARK (cacheline1);
EVP_CIPHER_CTX decrypt_ctx;
CLIB_CACHE_LINE_ALIGN_MARK (cacheline2);
HMAC_CTX hmac_ctx;
ipsec_crypto_alg_t last_encrypt_alg;
ipsec_crypto_alg_t last_decrypt_alg;
ipsec_integ_alg_t last_integ_alg;
} esp_main_per_thread_data_t;
typedef struct
{
esp_crypto_alg_t *esp_crypto_algs;
esp_integ_alg_t *esp_integ_algs;
esp_main_per_thread_data_t *per_thread_data;
} esp_main_t;
esp_main_t esp_main;
#define ESP_WINDOW_SIZE (64)
#define ESP_SEQ_MAX (4294967295UL)
u8 *format_esp_header (u8 * s, va_list * args);
always_inline int
esp_replay_check (ipsec_sa_t * sa, u32 seq)
{
u32 diff;
if (PREDICT_TRUE (seq > sa->last_seq))
return 0;
diff = sa->last_seq - seq;
if (ESP_WINDOW_SIZE > diff)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 1;
return 0;
}
always_inline int
esp_replay_check_esn (ipsec_sa_t * sa, u32 seq)
{
u32 tl = sa->last_seq;
u32 th = sa->last_seq_hi;
u32 diff = tl - seq;
if (PREDICT_TRUE (tl >= (ESP_WINDOW_SIZE - 1)))
{
if (seq >= (tl - ESP_WINDOW_SIZE + 1))
{
sa->seq_hi = th;
if (seq <= tl)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 0;
}
else
{
sa->seq_hi = th + 1;
return 0;
}
}
else
{
if (seq >= (tl - ESP_WINDOW_SIZE + 1))
{
sa->seq_hi = th - 1;
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
}
else
{
sa->seq_hi = th;
if (seq <= tl)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 0;
}
}
return 0;
}
/* TODO seq increment should be atomic to be accessed by multiple workers */
always_inline void
esp_replay_advance (ipsec_sa_t * sa, u32 seq)
{
u32 pos;
if (seq > sa->last_seq)
{
pos = seq - sa->last_seq;
if (pos < ESP_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
}
else
{
pos = sa->last_seq - seq;
sa->replay_window |= (1ULL << pos);
}
}
always_inline void
esp_replay_advance_esn (ipsec_sa_t * sa, u32 seq)
{
int wrap = sa->seq_hi - sa->last_seq_hi;
u32 pos;
if (wrap == 0 && seq > sa->last_seq)
{
pos = seq - sa->last_seq;
if (pos < ESP_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
}
else if (wrap > 0)
{
pos = ~seq + sa->last_seq + 1;
if (pos < ESP_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
sa->last_seq_hi = sa->seq_hi;
}
else if (wrap < 0)
{
pos = ~seq + sa->last_seq + 1;
sa->replay_window |= (1ULL << pos);
}
else
{
pos = sa->last_seq - seq;
sa->replay_window |= (1ULL << pos);
}
}
always_inline int
esp_seq_advance (ipsec_sa_t * sa)
{
if (PREDICT_TRUE (sa->use_esn))
{
if (PREDICT_FALSE (sa->seq == ESP_SEQ_MAX))
{
if (PREDICT_FALSE
(sa->use_anti_replay && sa->seq_hi == ESP_SEQ_MAX))
return 1;
sa->seq_hi++;
}
sa->seq++;
}
else
{
if (PREDICT_FALSE (sa->use_anti_replay && sa->seq == ESP_SEQ_MAX))
return 1;
sa->seq++;
}
return 0;
}
always_inline void
esp_init ()
{
esp_main_t *em = &esp_main;
vlib_thread_main_t *tm = vlib_get_thread_main ();
memset (em, 0, sizeof (em[0]));
vec_validate (em->esp_crypto_algs, IPSEC_CRYPTO_N_ALG - 1);
em->esp_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_128].type = EVP_aes_128_cbc ();
em->esp_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_192].type = EVP_aes_192_cbc ();
em->esp_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_256].type = EVP_aes_256_cbc ();
vec_validate (em->esp_integ_algs, IPSEC_INTEG_N_ALG - 1);
esp_integ_alg_t *i;
i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA1_96];
i->md = EVP_sha1 ();
i->trunc_size = 12;
i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_256_96];
i->md = EVP_sha256 ();
i->trunc_size = 12;
i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_256_128];
i->md = EVP_sha256 ();
i->trunc_size = 16;
i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_384_192];
i->md = EVP_sha384 ();
i->trunc_size = 24;
i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_512_256];
i->md = EVP_sha512 ();
i->trunc_size = 32;
vec_validate_aligned (em->per_thread_data, tm->n_vlib_mains - 1,
CLIB_CACHE_LINE_BYTES);
int thread_id;
for (thread_id = 0; thread_id < tm->n_vlib_mains - 1; thread_id++)
{
EVP_CIPHER_CTX_init (&(em->per_thread_data[thread_id].encrypt_ctx));
EVP_CIPHER_CTX_init (&(em->per_thread_data[thread_id].decrypt_ctx));
HMAC_CTX_init (&(em->per_thread_data[thread_id].hmac_ctx));
}
}
always_inline unsigned int
hmac_calc (ipsec_integ_alg_t alg,
u8 * key,
int key_len,
u8 * data, int data_len, u8 * signature, u8 use_esn, u32 seq_hi)
{
esp_main_t *em = &esp_main;
u32 thread_index = vlib_get_thread_index ();
HMAC_CTX *ctx = &(em->per_thread_data[thread_index].hmac_ctx);
const EVP_MD *md = NULL;
unsigned int len;
ASSERT (alg < IPSEC_INTEG_N_ALG);
if (PREDICT_FALSE (em->esp_integ_algs[alg].md == 0))
return 0;
if (PREDICT_FALSE (alg != em->per_thread_data[thread_index].last_integ_alg))
{
md = em->esp_integ_algs[alg].md;
em->per_thread_data[thread_index].last_integ_alg = alg;
}
HMAC_Init (ctx, key, key_len, md);
HMAC_Update (ctx, data, data_len);
if (PREDICT_TRUE (use_esn))
HMAC_Update (ctx, (u8 *) & seq_hi, sizeof (seq_hi));
HMAC_Final (ctx, signature, &len);
return em->esp_integ_algs[alg].trunc_size;
}
#endif /* __ESP_H__ */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/
|