summaryrefslogtreecommitdiffstats
path: root/src/vnet/l2/l2_classify.h
blob: 184187ff8797bb36eff46c67f1756cc36f87e478 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __included_vnet_l2_input_classify_h__
#define __included_vnet_l2_input_classify_h__

#include <vlib/vlib.h>
#include <vnet/vnet.h>
#include <vnet/pg/pg.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/ethernet/packet.h>
#include <vnet/ip/ip_packet.h>
#include <vnet/ip/ip4_packet.h>
#include <vnet/ip/ip6_packet.h>
#include <vlib/cli.h>
#include <vnet/l2/l2_input.h>
#include <vnet/l2/l2_output.h>
#include <vnet/l2/feat_bitmap.h>
#include <vppinfra/error.h>
#include <vppinfra/hash.h>
#include <vppinfra/cache.h>

#include <vnet/classify/vnet_classify.h>

typedef enum
{
  L2_INPUT_CLASSIFY_NEXT_DROP,
  L2_INPUT_CLASSIFY_NEXT_ETHERNET_INPUT,
  L2_INPUT_CLASSIFY_NEXT_IP4_INPUT,
  L2_INPUT_CLASSIFY_NEXT_IP6_INPUT,
  L2_INPUT_CLASSIFY_NEXT_LI,
  L2_INPUT_CLASSIFY_N_NEXT,
} l2_input_classify_next_t;

typedef enum
{
  L2_INPUT_CLASSIFY_TABLE_IP4,
  L2_INPUT_CLASSIFY_TABLE_IP6,
  L2_INPUT_CLASSIFY_TABLE_OTHER,
  L2_INPUT_CLASSIFY_N_TABLES,
} l2_input_classify_table_id_t;

typedef enum
{
  L2_OUTPUT_CLASSIFY_NEXT_DROP,
  L2_OUTPUT_CLASSIFY_N_NEXT,
} l2_output_classify_next_t;

typedef enum
{
  L2_OUTPUT_CLASSIFY_TABLE_IP4,
  L2_OUTPUT_CLASSIFY_TABLE_IP6,
  L2_OUTPUT_CLASSIFY_TABLE_OTHER,
  L2_OUTPUT_CLASSIFY_N_TABLES,
} l2_output_classify_table_id_t;

typedef struct _l2_classify_main
{
  /* Next nodes for each feature */
  u32 feat_next_node_index[32];

  /* Per-address-family classifier table vectors */
  u32 *classify_table_index_by_sw_if_index[L2_INPUT_CLASSIFY_N_TABLES];

  /* Next nodes for features and output interfaces */
  l2_output_next_nodes_st next_nodes;

  /* convenience variables */
  vlib_main_t *vlib_main;
  vnet_main_t *vnet_main;
  vnet_classify_main_t *vnet_classify_main;
} l2_input_classify_main_t;

typedef struct _l2_classify_main l2_output_classify_main_t;

extern l2_input_classify_main_t l2_input_classify_main;
extern vlib_node_registration_t l2_input_classify_node;

extern l2_output_classify_main_t l2_output_classify_main;
extern vlib_node_registration_t l2_output_classify_node;

void vnet_l2_input_classify_enable_disable (u32 sw_if_index,
					    int enable_disable);

int vnet_l2_input_classify_set_tables (u32 sw_if_index, u32 ip4_table_index,
				       u32 ip6_table_index,
				       u32 other_table_index);

void vnet_l2_output_classify_enable_disable (u32 sw_if_index,
					     int enable_disable);

int vnet_l2_output_classify_set_tables (u32 sw_if_index, u32 ip4_table_index,
					u32 ip6_table_index,
					u32 other_table_index);

#endif /* __included_vnet_l2_input_classify_h__ */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
63' href='#n463'>463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
# Copyright (c) 2021 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Algorithms to generate tables.
"""


import logging
import csv
import math
import re

from collections import OrderedDict
from xml.etree import ElementTree as ET
from datetime import datetime as dt
from datetime import timedelta
from copy import deepcopy
from json import loads

import plotly.graph_objects as go
import plotly.offline as ploff
import pandas as pd

from numpy import nan, isnan
from yaml import load, FullLoader, YAMLError

from pal_utils import mean, stdev, classify_anomalies, \
    convert_csv_to_pretty_txt, relative_change_stdev, relative_change


REGEX_NIC = re.compile(r'(\d*ge\dp\d\D*\d*[a-z]*)')


def generate_tables(spec, data):
    """Generate all tables specified in the specification file.

    :param spec: Specification read from the specification file.
    :param data: Data to process.
    :type spec: Specification
    :type data: InputData
    """

    generator = {
        u"table_merged_details": table_merged_details,
        u"table_soak_vs_ndr": table_soak_vs_ndr,
        u"table_perf_trending_dash": table_perf_trending_dash,
        u"table_perf_trending_dash_html": table_perf_trending_dash_html,
        u"table_last_failed_tests": table_last_failed_tests,
        u"table_failed_tests": table_failed_tests,
        u"table_failed_tests_html": table_failed_tests_html,
        u"table_oper_data_html": table_oper_data_html,
        u"table_comparison": table_comparison,
        u"table_weekly_comparison": table_weekly_comparison
    }

    logging.info(u"Generating the tables ...")
    for table in spec.tables:
        try:
            if table[u"algorithm"] == u"table_weekly_comparison":
                table[u"testbeds"] = spec.environment.get(u"testbeds", None)
            generator[table[u"algorithm"]](table, data)
        except NameError as err:
            logging.error(
                f"Probably algorithm {table[u'algorithm']} is not defined: "
                f"{repr(err)}"
            )
    logging.info(u"Done.")


def table_oper_data_html(table, input_data):
    """Generate the table(s) with algorithm: html_table_oper_data
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")
    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )
    data = input_data.filter_data(
        table,
        params=[u"name", u"parent", u"telemetry-show-run", u"type"],
        continue_on_error=True
    )
    if data.empty:
        return
    data = input_data.merge_data(data)

    sort_tests = table.get(u"sort", None)
    if sort_tests:
        args = dict(
            inplace=True,
            ascending=(sort_tests == u"ascending")
        )
        data.sort_index(**args)

    suites = input_data.filter_data(
        table,
        continue_on_error=True,
        data_set=u"suites"
    )
    if suites.empty:
        return
    suites = input_data.merge_data(suites)

    def _generate_html_table(tst_data):
        """Generate an HTML table with operational data for the given test.

        :param tst_data: Test data to be used to generate the table.
        :type tst_data: pandas.Series
        :returns: HTML table with operational data.
        :rtype: str
        """

        colors = {
            u"header": u"#7eade7",
            u"empty": u"#ffffff",
            u"body": (u"#e9f1fb", u"#d4e4f7")
        }

        tbl = ET.Element(u"table", attrib=dict(width=u"100%", border=u"0"))

        trow = ET.SubElement(tbl, u"tr", attrib=dict(bgcolor=colors[u"header"]))
        thead = ET.SubElement(
            trow, u"th", attrib=dict(align=u"left", colspan=u"6")
        )
        thead.text = tst_data[u"name"]

        trow = ET.SubElement(tbl, u"tr", attrib=dict(bgcolor=colors[u"empty"]))
        thead = ET.SubElement(
            trow, u"th", attrib=dict(align=u"left", colspan=u"6")
        )
        thead.text = u"\t"

        if tst_data.get(u"telemetry-show-run", None) is None or \
                isinstance(tst_data[u"telemetry-show-run"], str):
            trow = ET.SubElement(
                tbl, u"tr", attrib=dict(bgcolor=colors[u"header"])
            )
            tcol = ET.SubElement(
                trow, u"td", attrib=dict(align=u"left", colspan=u"6")
            )
            tcol.text = u"No Data"

            trow = ET.SubElement(
                tbl, u"tr", attrib=dict(bgcolor=colors[u"empty"])
            )
            thead = ET.SubElement(
                trow, u"th", attrib=dict(align=u"left", colspan=u"6")
            )
            font = ET.SubElement(
                thead, u"font", attrib=dict(size=u"12px", color=u"#ffffff")
            )
            font.text = u"."
            return str(ET.tostring(tbl, encoding=u"unicode"))

        tbl_hdr = (
            u"Name",
            u"Nr of Vectors",
            u"Nr of Packets",
            u"Suspends",
            u"Cycles per Packet",
            u"Average Vector Size"
        )

        for dut_data in tst_data[u"telemetry-show-run"].values():
            trow = ET.SubElement(
                tbl, u"tr", attrib=dict(bgcolor=colors[u"header"])
            )
            tcol = ET.SubElement(
                trow, u"td", attrib=dict(align=u"left", colspan=u"6")
            )
            if dut_data.get(u"runtime", None) is None:
                tcol.text = u"No Data"
                continue

            runtime = dict()
            for item in dut_data[u"runtime"].get(u"data", tuple()):
                tid = int(item[u"labels"][u"thread_id"])
                if runtime.get(tid, None) is None:
                    runtime[tid] = dict()
                gnode = item[u"labels"][u"graph_node"]
                if runtime[tid].get(gnode, None) is None:
                    runtime[tid][gnode] = dict()
                try:
                    runtime[tid][gnode][item[u"name"]] = float(item[u"value"])
                except ValueError:
                    runtime[tid][gnode][item[u"name"]] = item[u"value"]

            threads = dict({idx: list() for idx in range(len(runtime))})
            for idx, run_data in runtime.items():
                for gnode, gdata in run_data.items():
                    if gdata[u"vectors"] > 0:
                        clocks = gdata[u"clocks"] / gdata[u"vectors"]
                    elif gdata[u"calls"] > 0:
                        clocks = gdata[u"clocks"] / gdata[u"calls"]
                    elif gdata[u"suspends"] > 0:
                        clocks = gdata[u"clocks"] / gdata[u"suspends"]
                    else:
                        clocks = 0.0
                    if gdata[u"calls"] > 0:
                        vectors_call = gdata[u"vectors"] / gdata[u"calls"]
                    else:
                        vectors_call = 0.0
                    if int(gdata[u"calls"]) + int(gdata[u"vectors"]) + \
                            int(gdata[u"suspends"]):
                        threads[idx].append([
                            gnode,
                            int(gdata[u"calls"]),
                            int(gdata[u"vectors"]),
                            int(gdata[u"suspends"]),
                            clocks,
                            vectors_call
                        ])

            bold = ET.SubElement(tcol, u"b")
            bold.text = (
                f"Host IP: {dut_data.get(u'host', '')}, "
                f"Socket: {dut_data.get(u'socket', '')}"
            )
            trow = ET.SubElement(
                tbl, u"tr", attrib=dict(bgcolor=colors[u"empty"])
            )
            thead = ET.SubElement(
                trow, u"th", attrib=dict(align=u"left", colspan=u"6")
            )
            thead.text = u"\t"

            for thread_nr, thread in threads.items():
                trow = ET.SubElement(
                    tbl, u"tr", attrib=dict(bgcolor=colors[u"header"])
                )
                tcol = ET.SubElement(
                    trow, u"td", attrib=dict(align=u"left", colspan=u"6")
                )
                bold = ET.SubElement(tcol, u"b")
                bold.text = u"main" if thread_nr == 0 else f"worker_{thread_nr}"
                trow = ET.SubElement(
                    tbl, u"tr", attrib=dict(bgcolor=colors[u"header"])
                )
                for idx, col in enumerate(tbl_hdr):
                    tcol = ET.SubElement(
                        trow, u"td",
                        attrib=dict(align=u"right" if idx else u"left")
                    )
                    font = ET.SubElement(
                        tcol, u"font", attrib=dict(size=u"2")
                    )
                    bold = ET.SubElement(font, u"b")
                    bold.text = col
                for row_nr, row in enumerate(thread):
                    trow = ET.SubElement(
                        tbl, u"tr",
                        attrib=dict(bgcolor=colors[u"body"][row_nr % 2])
                    )
                    for idx, col in enumerate(row):
                        tcol = ET.SubElement(
                            trow, u"td",
                            attrib=dict(align=u"right" if idx else u"left")
                        )
                        font = ET.SubElement(
                            tcol, u"font", attrib=dict(size=u"2")
                        )
                        if isinstance(col, float):
                            font.text = f"{col:.2f}"
                        else:
                            font.text = str(col)
                trow = ET.SubElement(
                    tbl, u"tr", attrib=dict(bgcolor=colors[u"empty"])
                )
                thead = ET.SubElement(
                    trow, u"th", attrib=dict(align=u"left", colspan=u"6")
                )
                thead.text = u"\t"

        trow = ET.SubElement(tbl, u"tr", attrib=dict(bgcolor=colors[u"empty"]))
        thead = ET.SubElement(
            trow, u"th", attrib=dict(align=u"left", colspan=u"6")
        )
        font = ET.SubElement(
            thead, u"font", attrib=dict(size=u"12px", color=u"#ffffff")
        )
        font.text = u"."

        return str(ET.tostring(tbl, encoding=u"unicode"))

    for suite in suites.values:
        html_table = str()
        for test_data in data.values:
            if test_data[u"parent"] not in suite[u"name"]:
                continue
            html_table += _generate_html_table(test_data)
        if not html_table:
            continue
        try:
            file_name = f"{table[u'output-file']}{suite[u'name']}.rst"
            with open(f"{file_name}", u'w') as html_file:
                logging.info(f"    Writing file: {file_name}")
                html_file.write(u".. raw:: html\n\n\t")
                html_file.write(html_table)
                html_file.write(u"\n\t<p><br><br></p>\n")
        except KeyError:
            logging.warning(u"The output file is not defined.")
            return
    logging.info(u"  Done.")


def table_merged_details(table, input_data):
    """Generate the table(s) with algorithm: table_merged_details
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )
    data = input_data.filter_data(table, continue_on_error=True)
    data = input_data.merge_data(data)

    sort_tests = table.get(u"sort", None)
    if sort_tests:
        args = dict(
            inplace=True,
            ascending=(sort_tests == u"ascending")
        )
        data.sort_index(**args)

    suites = input_data.filter_data(
        table, continue_on_error=True, data_set=u"suites")
    suites = input_data.merge_data(suites)

    # Prepare the header of the tables
    header = list()
    for column in table[u"columns"]:
        header.append(
            u'"{0}"'.format(str(column[u"title"]).replace(u'"', u'""'))
        )

    for suite in suites.values:
        # Generate data
        suite_name = suite[u"name"]
        table_lst = list()
        for test in data.keys():
            if data[test][u"status"] != u"PASS" or \
                    data[test][u"parent"] not in suite_name:
                continue
            row_lst = list()
            for column in table[u"columns"]:
                try:
                    col_data = str(data[test][column[
                        u"data"].split(u" ")[1]]).replace(u'"', u'""')
                    # Do not include tests with "Test Failed" in test message
                    if u"Test Failed" in col_data:
                        continue
                    col_data = col_data.replace(
                        u"No Data", u"Not Captured     "
                    )
                    if column[u"data"].split(u" ")[1] in (u"name", ):
                        if len(col_data) > 30:
                            col_data_lst = col_data.split(u"-")
                            half = int(len(col_data_lst) / 2)
                            col_data = f"{u'-'.join(col_data_lst[:half])}" \
                                       f"- |br| " \
                                       f"{u'-'.join(col_data_lst[half:])}"
                        col_data = f" |prein| {col_data} |preout| "
                    elif column[u"data"].split(u" ")[1] in (u"msg", ):
                        # Temporary solution: remove NDR results from message:
                        if bool(table.get(u'remove-ndr', False)):
                            try:
                                col_data = col_data.split(u"\n", 1)[1]
                            except IndexError:
                                pass
                        col_data = col_data.replace(u'\n', u' |br| ').\
                            replace(u'\r', u'').replace(u'"', u"'")
                        col_data = f" |prein| {col_data} |preout| "
                    elif column[u"data"].split(u" ")[1] in (u"conf-history", ):
                        col_data = col_data.replace(u'\n', u' |br| ')
                        col_data = f" |prein| {col_data[:-5]} |preout| "
                    row_lst.append(f'"{col_data}"')
                except KeyError:
                    row_lst.append(u'"Not captured"')
            if len(row_lst) == len(table[u"columns"]):
                table_lst.append(row_lst)

        # Write the data to file
        if table_lst:
            separator = u"" if table[u'output-file'].endswith(u"/") else u"_"
            file_name = f"{table[u'output-file']}{separator}{suite_name}.csv"
            logging.info(f"      Writing file: {file_name}")
            with open(file_name, u"wt") as file_handler:
                file_handler.write(u",".join(header) + u"\n")
                for item in table_lst:
                    file_handler.write(u",".join(item) + u"\n")

    logging.info(u"  Done.")


def _tpc_modify_test_name(test_name, ignore_nic=False):
    """Modify a test name by replacing its parts.

    :param test_name: Test name to be modified.
    :param ignore_nic: If True, NIC is removed from TC name.
    :type test_name: str
    :type ignore_nic: bool
    :returns: Modified test name.
    :rtype: str
    """
    test_name_mod = test_name.\
        replace(u"-ndrpdr", u"").\
        replace(u"1t1c", u"1c").\
        replace(u"2t1c", u"1c"). \
        replace(u"2t2c", u"2c").\
        replace(u"4t2c", u"2c"). \
        replace(u"4t4c", u"4c").\
        replace(u"8t4c", u"4c")

    if ignore_nic:
        return re.sub(REGEX_NIC, u"", test_name_mod)
    return test_name_mod


def _tpc_modify_displayed_test_name(test_name):
    """Modify a test name which is displayed in a table by replacing its parts.

    :param test_name: Test name to be modified.
    :type test_name: str
    :returns: Modified test name.
    :rtype: str
    """
    return test_name.\
        replace(u"1t1c", u"1c").\
        replace(u"2t1c", u"1c"). \
        replace(u"2t2c", u"2c").\
        replace(u"4t2c", u"2c"). \
        replace(u"4t4c", u"4c").\
        replace(u"8t4c", u"4c")


def _tpc_insert_data(target, src, include_tests):
    """Insert src data to the target structure.

    :param target: Target structure where the data is placed.
    :param src: Source data to be placed into the target structure.
    :param include_tests: Which results will be included (MRR, NDR, PDR).
    :type target: list
    :type src: dict
    :type include_tests: str
    """
    try:
        if include_tests == u"MRR":
            target[u"mean"] = src[u"result"][u"receive-rate"]
            target[u"stdev"] = src[u"result"][u"receive-stdev"]
        elif include_tests == u"PDR":
            target[u"data"].append(src[u"throughput"][u"PDR"][u"LOWER"])
        elif include_tests == u"NDR":
            target[u"data"].append(src[u"throughput"][u"NDR"][u"LOWER"])
        elif u"latency" in include_tests:
            keys = include_tests.split(u"-")
            if len(keys) == 4:
                lat = src[keys[0]][keys[1]][keys[2]][keys[3]]
                target[u"data"].append(
                    float(u"nan") if lat == -1 else lat * 1e6
                )
    except (KeyError, TypeError):
        pass


def _tpc_generate_html_table(header, data, out_file_name, legend=u"",
                             footnote=u"", sort_data=True, title=u"",
                             generate_rst=True):
    """Generate html table from input data with simple sorting possibility.

    :param header: Table header.
    :param data: Input data to be included in the table. It is a list of lists.
        Inner lists are rows in the table. All inner lists must be of the same
        length. The length of these lists must be the same as the length of the
        header.
    :param out_file_name: The name (relative or full path) where the
        generated html table is written.
    :param legend: The legend to display below the table.
    :param footnote: The footnote to display below the table (and legend).
    :param sort_data: If True the data sorting is enabled.
    :param title: The table (and file) title.
    :param generate_rst: If True, wrapping rst file is generated.
    :type header: list
    :type data: list of lists
    :type out_file_name: str
    :type legend: str
    :type footnote: str
    :type sort_data: bool
    :type title: str
    :type generate_rst: bool
    """

    try:
        idx = header.index(u"Test Case")
    except ValueError:
        idx = 0
    params = {
        u"align-hdr": (
            [u"left", u"right"],
            [u"left", u"left", u"right"],
            [u"left", u"left", u"left", u"right"]
        ),
        u"align-itm": (
            [u"left", u"right"],
            [u"left", u"left", u"right"],
            [u"left", u"left", u"left", u"right"]
        ),
        u"width": ([15, 9], [4, 24, 10], [4, 4, 32, 10])
    }

    df_data = pd.DataFrame(data, columns=header)

    if sort_data:
        df_sorted = [df_data.sort_values(
            by=[key, header[idx]], ascending=[True, True]
            if key != header[idx] else [False, True]) for key in header]
        df_sorted_rev = [df_data.sort_values(
            by=[key, header[idx]], ascending=[False, True]
            if key != header[idx] else [True, True]) for key in header]
        df_sorted.extend(df_sorted_rev)
    else:
        df_sorted = df_data

    fill_color = [[u"#d4e4f7" if idx % 2 else u"#e9f1fb"
                   for idx in range(len(df_data))]]
    table_header = dict(
        values=[f"<b>{item.replace(u',', u',<br>')}</b>" for item in header],
        fill_color=u"#7eade7",
        align=params[u"align-hdr"][idx],
        font=dict(
            family=u"Courier New",
            size=12
        )
    )

    fig = go.Figure()

    if sort_data:
        for table in df_sorted:
            columns = [table.get(col) for col in header]
            fig.add_trace(
                go.Table(
                    columnwidth=params[u"width"][idx],
                    header=table_header,
                    cells=dict(
                        values=columns,
                        fill_color=fill_color,
                        align=params[u"align-itm"][idx],
                        font=dict(
                            family=u"Courier New",
                            size=12
                        )
                    )
                )
            )

        buttons = list()
        menu_items = [f"<b>{itm}</b> (ascending)" for itm in header]
        menu_items.extend([f"<b>{itm}</b> (descending)" for itm in header])
        for idx, hdr in enumerate(menu_items):
            visible = [False, ] * len(menu_items)
            visible[idx] = True
            buttons.append(
                dict(
                    label=hdr.replace(u" [Mpps]", u""),
                    method=u"update",
                    args=[{u"visible": visible}],
                )
            )

        fig.update_layout(
            updatemenus=[
                go.layout.Updatemenu(
                    type=u"dropdown",
                    direction=u"down",
                    x=0.0,
                    xanchor=u"left",
                    y=1.002,
                    yanchor=u"bottom",
                    active=len(menu_items) - 1,
                    buttons=list(buttons)
                )
            ],
        )
    else:
        fig.add_trace(
            go.Table(
                columnwidth=params[u"width"][idx],
                header=table_header,
                cells=dict(
                    values=[df_sorted.get(col) for col in header],
                    fill_color=fill_color,
                    align=params[u"align-itm"][idx],
                    font=dict(
                        family=u"Courier New",
                        size=12
                    )
                )
            )
        )

    ploff.plot(
        fig,
        show_link=False,
        auto_open=False,
        filename=f"{out_file_name}_in.html"
    )

    if not generate_rst:
        return

    file_name = out_file_name.split(u"/")[-1]
    if u"vpp" in out_file_name:
        path = u"_tmp/src/vpp_performance_tests/comparisons/"
    else:
        path = u"_tmp/src/dpdk_performance_tests/comparisons/"
    logging.info(f"    Writing the HTML file to {path}{file_name}.rst")
    with open(f"{path}{file_name}.rst", u"wt") as rst_file:
        rst_file.write(
            u"\n"
            u".. |br| raw:: html\n\n    <br />\n\n\n"
            u".. |prein| raw:: html\n\n    <pre>\n\n\n"
            u".. |preout| raw:: html\n\n    </pre>\n\n"
        )
        if title:
            rst_file.write(f"{title}\n")
            rst_file.write(f"{u'`' * len(title)}\n\n")
        rst_file.write(
            u".. raw:: html\n\n"
            f'    <iframe frameborder="0" scrolling="no" '
            f'width="1600" height="1200" '
            f'src="../..{out_file_name.replace(u"_build", u"")}_in.html">'
            f'</iframe>\n\n'
        )

        if legend:
            try:
                itm_lst = legend[1:-2].split(u"\n")
                rst_file.write(
                    f"{itm_lst[0]}\n\n- " + u'\n- '.join(itm_lst[1:]) + u"\n\n"
                )
            except IndexError as err:
                logging.error(f"Legend cannot be written to html file\n{err}")
        if footnote:
            try:
                itm_lst = footnote[1:].split(u"\n")
                rst_file.write(
                    f"{itm_lst[0]}\n\n- " + u'\n- '.join(itm_lst[1:]) + u"\n\n"
                )
            except IndexError as err:
                logging.error(f"Footnote cannot be written to html file\n{err}")


def table_soak_vs_ndr(table, input_data):
    """Generate the table(s) with algorithm: table_soak_vs_ndr
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )
    data = input_data.filter_data(table, continue_on_error=True)

    # Prepare the header of the table
    try:
        header = [
            u"Test Case",
            f"Avg({table[u'reference'][u'title']})",
            f"Stdev({table[u'reference'][u'title']})",
            f"Avg({table[u'compare'][u'title']})",
            f"Stdev{table[u'compare'][u'title']})",
            u"Diff",
            u"Stdev(Diff)"
        ]
        header_str = u";".join(header) + u"\n"
        legend = (
            u"\nLegend:\n"
            f"Avg({table[u'reference'][u'title']}): "
            f"Mean value of {table[u'reference'][u'title']} [Mpps] computed "
            f"from a series of runs of the listed tests.\n"
            f"Stdev({table[u'reference'][u'title']}): "
            f"Standard deviation value of {table[u'reference'][u'title']} "
            f"[Mpps] computed from a series of runs of the listed tests.\n"
            f"Avg({table[u'compare'][u'title']}): "
            f"Mean value of {table[u'compare'][u'title']} [Mpps] computed from "
            f"a series of runs of the listed tests.\n"
            f"Stdev({table[u'compare'][u'title']}): "
            f"Standard deviation value of {table[u'compare'][u'title']} [Mpps] "
            f"computed from a series of runs of the listed tests.\n"
            f"Diff({table[u'reference'][u'title']},"
            f"{table[u'compare'][u'title']}): "
            f"Percentage change calculated for mean values.\n"
            u"Stdev(Diff): "
            u"Standard deviation of percentage change calculated for mean "
            u"values."
        )
    except (AttributeError, KeyError) as err:
        logging.error(f"The model is invalid, missing parameter: {repr(err)}")
        return

    # Create a list of available SOAK test results:
    tbl_dict = dict()
    for job, builds in table[u"compare"][u"data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].items():
                if tst_data[u"type"] == u"SOAK":
                    tst_name_mod = tst_name.replace(u"-soak", u"")
                    if tbl_dict.get(tst_name_mod, None) is None:
                        groups = re.search(REGEX_NIC, tst_data[u"parent"])
                        nic = groups.group(0) if groups else u""
                        name = (
                            f"{nic}-"
                            f"{u'-'.join(tst_data[u'name'].split(u'-')[:-1])}"
                        )
                        tbl_dict[tst_name_mod] = {
                            u"name": name,
                            u"ref-data": list(),
                            u"cmp-data": list()
                        }
                    try:
                        tbl_dict[tst_name_mod][u"cmp-data"].append(
                            tst_data[u"throughput"][u"LOWER"])
                    except (KeyError, TypeError):
                        pass
    tests_lst = tbl_dict.keys()

    # Add corresponding NDR test results:
    for job, builds in table[u"reference"][u"data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].items():
                tst_name_mod = tst_name.replace(u"-ndrpdr", u"").\
                    replace(u"-mrr", u"")
                if tst_name_mod not in tests_lst:
                    continue
                try:
                    if tst_data[u"type"] not in (u"NDRPDR", u"MRR", u"BMRR"):
                        continue
                    if table[u"include-tests"] == u"MRR":
                        result = (tst_data[u"result"][u"receive-rate"],
                                  tst_data[u"result"][u"receive-stdev"])
                    elif table[u"include-tests"] == u"PDR":
                        result = \
                            tst_data[u"throughput"][u"PDR"][u"LOWER"]
                    elif table[u"include-tests"] == u"NDR":
                        result = \
                            tst_data[u"throughput"][u"NDR"][u"LOWER"]
                    else:
                        result = None
                    if result is not None:
                        tbl_dict[tst_name_mod][u"ref-data"].append(
                            result)
                except (KeyError, TypeError):
                    continue

    tbl_lst = list()
    for tst_name in tbl_dict:
        item = [tbl_dict[tst_name][u"name"], ]
        data_r = tbl_dict[tst_name][u"ref-data"]
        if data_r:
            if table[u"include-tests"] == u"MRR":
                data_r_mean = data_r[0][0]
                data_r_stdev = data_r[0][1]
            else:
                data_r_mean = mean(data_r)
                data_r_stdev = stdev(data_r)
            item.append(round(data_r_mean / 1e6, 1))
            item.append(round(data_r_stdev / 1e6, 1))
        else:
            data_r_mean = None
            data_r_stdev = None
            item.extend([None, None])
        data_c = tbl_dict[tst_name][u"cmp-data"]
        if data_c:
            if table[u"include-tests"] == u"MRR":
                data_c_mean = data_c[0][0]
                data_c_stdev = data_c[0][1]
            else:
                data_c_mean = mean(data_c)
                data_c_stdev = stdev(data_c)
            item.append(round(data_c_mean / 1e6, 1))
            item.append(round(data_c_stdev / 1e6, 1))
        else:
            data_c_mean = None
            data_c_stdev = None
            item.extend([None, None])
        if data_r_mean is not None and data_c_mean is not None:
            delta, d_stdev = relative_change_stdev(
                data_r_mean, data_c_mean, data_r_stdev, data_c_stdev)
            try:
                item.append(round(delta))
            except ValueError:
                item.append(delta)
            try:
                item.append(round(d_stdev))
            except ValueError:
                item.append(d_stdev)
            tbl_lst.append(item)

    # Sort the table according to the relative change
    tbl_lst.sort(key=lambda rel: rel[-1], reverse=True)

    # Generate csv tables:
    csv_file_name = f"{table[u'output-file']}.csv"
    with open(csv_file_name, u"wt") as file_handler:
        file_handler.write(header_str)
        for test in tbl_lst:
            file_handler.write(u";".join([str(item) for item in test]) + u"\n")

    convert_csv_to_pretty_txt(
        csv_file_name, f"{table[u'output-file']}.txt", delimiter=u";"
    )
    with open(f"{table[u'output-file']}.txt", u'a') as file_handler:
        file_handler.write(legend)

    # Generate html table:
    _tpc_generate_html_table(
        header,
        tbl_lst,
        table[u'output-file'],
        legend=legend,
        title=table.get(u"title", u"")
    )


def table_perf_trending_dash(table, input_data):
    """Generate the table(s) with algorithm:
    table_perf_trending_dash
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )
    data = input_data.filter_data(table, continue_on_error=True)

    # Prepare the header of the tables
    header = [
        u"Test Case",
        u"Trend [Mpps]",
        u"Short-Term Change [%]",
        u"Long-Term Change [%]",
        u"Regressions [#]",
        u"Progressions [#]"
    ]
    header_str = u",".join(header) + u"\n"

    incl_tests = table.get(u"include-tests", u"MRR")

    # Prepare data to the table:
    tbl_dict = dict()
    for job, builds in table[u"data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].items():
                if tst_name.lower() in table.get(u"ignore-list", list()):
                    continue
                if tbl_dict.get(tst_name, None) is None:
                    groups = re.search(REGEX_NIC, tst_data[u"parent"])
                    if not groups:
                        continue
                    nic = groups.group(0)
                    tbl_dict[tst_name] = {
                        u"name": f"{nic}-{tst_data[u'name']}",
                        u"data": OrderedDict()
                    }
                try:
                    if incl_tests == u"MRR":
                        tbl_dict[tst_name][u"data"][str(build)] = \
                            tst_data[u"result"][u"receive-rate"]
                    elif incl_tests == u"NDR":
                        tbl_dict[tst_name][u"data"][str(build)] = \
                            tst_data[u"throughput"][u"NDR"][u"LOWER"]
                    elif incl_tests == u"PDR":
                        tbl_dict[tst_name][u"data"][str(build)] = \
                            tst_data[u"throughput"][u"PDR"][u"LOWER"]
                except (TypeError, KeyError):
                    pass  # No data in output.xml for this test

    tbl_lst = list()
    for tst_name in tbl_dict:
        data_t = tbl_dict[tst_name][u"data"]
        if len(data_t) < 2:
            continue

        try:
            classification_lst, avgs, _ = classify_anomalies(data_t)
        except ValueError as err:
            logging.info(f"{err} Skipping")
            return

        win_size = min(len(data_t), table[u"window"])
        long_win_size = min(len(data_t), table[u"long-trend-window"])

        try:
            max_long_avg = max(
                [x for x in avgs[-long_win_size:-win_size]
                 if not isnan(x)])
        except ValueError:
            max_long_avg = nan
        last_avg = avgs[-1]
        avg_week_ago = avgs[max(-win_size, -len(avgs))]

        if isnan(last_avg) or isnan(avg_week_ago) or avg_week_ago == 0.0:
            rel_change_last = nan
        else:
            rel_change_last = round(
                ((last_avg - avg_week_ago) / avg_week_ago) * 1e2, 2)

        if isnan(max_long_avg) or isnan(last_avg) or max_long_avg == 0.0:
            rel_change_long = nan
        else:
            rel_change_long = round(
                ((last_avg - max_long_avg) / max_long_avg) * 1e2, 2)

        if classification_lst:
            if isnan(rel_change_last) and isnan(rel_change_long):
                continue
            if isnan(last_avg) or isnan(rel_change_last) or \
                    isnan(rel_change_long):
                continue
            tbl_lst.append(
                [tbl_dict[tst_name][u"name"],
                 round(last_avg / 1e6, 2),
                 rel_change_last,
                 rel_change_long,
                 classification_lst[-win_size+1:].count(u"regression"),
                 classification_lst[-win_size+1:].count(u"progression")])

    tbl_lst.sort(key=lambda rel: rel[0])
    tbl_lst.sort(key=lambda rel: rel[3])
    tbl_lst.sort(key=lambda rel: rel[2])

    tbl_sorted = list()
    for nrr in range(table[u"window"], -1, -1):
        tbl_reg = [item for item in tbl_lst if item[4] == nrr]
        for nrp in range(table[u"window"], -1, -1):
            tbl_out = [item for item in tbl_reg if item[5] == nrp]
            tbl_sorted.extend(tbl_out)

    file_name = f"{table[u'output-file']}{table[u'output-file-ext']}"

    logging.info(f"    Writing file: {file_name}")
    with open(file_name, u"wt") as file_handler:
        file_handler.write(header_str)
        for test in tbl_sorted:
            file_handler.write(u",".join([str(item) for item in test]) + u'\n')

    logging.info(f"    Writing file: {table[u'output-file']}.txt")
    convert_csv_to_pretty_txt(file_name, f"{table[u'output-file']}.txt")


def _generate_url(testbed, test_name):
    """Generate URL to a trending plot from the name of the test case.

    :param testbed: The testbed used for testing.
    :param test_name: The name of the test case.
    :type testbed: str
    :type test_name: str
    :returns: The URL to the plot with the trending data for the given test
        case.
    :rtype str
    """

    if u"x520" in test_name:
        nic = u"x520"
    elif u"x710" in test_name:
        nic = u"x710"
    elif u"xl710" in test_name:
        nic = u"xl710"
    elif u"xxv710" in test_name:
        nic = u"xxv710"
    elif u"vic1227" in test_name:
        nic = u"vic1227"
    elif u"vic1385" in test_name:
        nic = u"vic1385"
    elif u"x553" in test_name:
        nic = u"x553"
    elif u"cx556" in test_name or u"cx556a" in test_name:
        nic = u"cx556a"
    else:
        nic = u""

    if u"64b" in test_name:
        frame_size = u"64b"
    elif u"78b" in test_name:
        frame_size = u"78b"
    elif u"imix" in test_name:
        frame_size = u"imix"
    elif u"9000b" in test_name:
        frame_size = u"9000b"
    elif u"1518b" in test_name:
        frame_size = u"1518b"
    elif u"114b" in test_name:
        frame_size = u"114b"
    else:
        frame_size = u""

    if u"1t1c" in test_name or \
        (u"-1c-" in test_name and
         testbed in (u"3n-hsw", u"3n-tsh", u"2n-dnv", u"3n-dnv", u"2n-tx2")):
        cores = u"1t1c"
    elif u"2t2c" in test_name or \
         (u"-2c-" in test_name and
          testbed in (u"3n-hsw", u"3n-tsh", u"2n-dnv", u"3n-dnv", u"2n-tx2")):
        cores = u"2t2c"
    elif u"4t4c" in test_name or \
         (u"-4c-" in test_name and
          testbed in (u"3n-hsw", u"3n-tsh", u"2n-dnv", u"3n-dnv", u"2n-tx2")):
        cores = u"4t4c"
    elif u"2t1c" in test_name or \
         (u"-1c-" in test_name and
          testbed in (u"2n-skx", u"3n-skx", u"2n-clx", u"2n-zn2")):
        cores = u"2t1c"
    elif u"4t2c" in test_name or \
         (u"-2c-" in test_name and
          testbed in (u"2n-skx", u"3n-skx", u"2n-clx", u"2n-zn2")):
        cores = u"4t2c"
    elif u"8t4c" in test_name or \
         (u"-4c-" in test_name and
          testbed in (u"2n-skx", u"3n-skx", u"2n-clx", u"2n-zn2")):
        cores = u"8t4c"
    else:
        cores = u""

    if u"testpmd" in test_name:
        driver = u"testpmd"
    elif u"l3fwd" in test_name:
        driver = u"l3fwd"
    elif u"avf" in test_name:
        driver = u"avf"
    elif u"rdma" in test_name:
        driver = u"rdma"
    elif u"dnv" in testbed or u"tsh" in testbed:
        driver = u"ixgbe"
    else:
        driver = u"dpdk"

    if u"macip-iacl1s" in test_name:
        bsf = u"features-macip-iacl1"
    elif u"macip-iacl10s" in test_name:
        bsf = u"features-macip-iacl10"
    elif u"macip-iacl50s" in test_name:
        bsf = u"features-macip-iacl50"
    elif u"iacl1s" in test_name:
        bsf = u"features-iacl1"
    elif u"iacl10s" in test_name:
        bsf = u"features-iacl10"
    elif u"iacl50s" in test_name:
        bsf = u"features-iacl50"
    elif u"oacl1s" in test_name:
        bsf = u"features-oacl1"
    elif u"oacl10s" in test_name:
        bsf = u"features-oacl10"
    elif u"oacl50s" in test_name:
        bsf = u"features-oacl50"
    elif u"nat44det" in test_name:
        bsf = u"nat44det-bidir"
    elif u"nat44ed" in test_name and u"udir" in test_name:
        bsf = u"nat44ed-udir"
    elif u"-cps" in test_name and u"ethip4udp" in test_name:
        bsf = u"udp-cps"
    elif u"-cps" in test_name and u"ethip4tcp" in test_name:
        bsf = u"tcp-cps"
    elif u"-pps" in test_name and u"ethip4udp" in test_name:
        bsf = u"udp-pps"
    elif u"-pps" in test_name and u"ethip4tcp" in test_name:
        bsf = u"tcp-pps"
    elif u"-tput" in test_name and u"ethip4udp" in test_name:
        bsf = u"udp-tput"
    elif u"-tput" in test_name and u"ethip4tcp" in test_name:
        bsf = u"tcp-tput"
    elif u"udpsrcscale" in test_name:
        bsf = u"features-udp"
    elif u"iacl" in test_name:
        bsf = u"features"
    elif u"policer" in test_name:
        bsf = u"features"
    elif u"adl" in test_name:
        bsf = u"features"
    elif u"cop" in test_name:
        bsf = u"features"
    elif u"nat" in test_name:
        bsf = u"features"
    elif u"macip" in test_name:
        bsf = u"features"
    elif u"scale" in test_name:
        bsf = u"scale"
    elif u"base" in test_name:
        bsf = u"base"
    else:
        bsf = u"base"

    if u"114b" in test_name and u"vhost" in test_name:
        domain = u"vts"
    elif u"nat44" in test_name or u"-pps" in test_name or u"-cps" in test_name:
        domain = u"nat44"
        if u"nat44det" in test_name:
            domain += u"-det-bidir"
        else:
            domain += u"-ed"
        if u"udir" in test_name:
            domain += u"-unidir"
        elif u"-ethip4udp-" in test_name:
            domain += u"-udp"
        elif u"-ethip4tcp-" in test_name:
            domain += u"-tcp"
        if u"-cps" in test_name:
            domain += u"-cps"
        elif u"-pps" in test_name:
            domain += u"-pps"
        elif u"-tput" in test_name:
            domain += u"-tput"
    elif u"testpmd" in test_name or u"l3fwd" in test_name:
        domain = u"dpdk"
    elif u"memif" in test_name:
        domain = u"container_memif"
    elif u"srv6" in test_name:
        domain = u"srv6"
    elif u"vhost" in test_name:
        domain = u"vhost"
        if u"vppl2xc" in test_name:
            driver += u"-vpp"
        else:
            driver += u"-testpmd"
        if u"lbvpplacp" in test_name:
            bsf += u"-link-bonding"
    elif u"ch" in test_name and u"vh" in test_name and u"vm" in test_name:
        domain = u"nf_service_density_vnfc"
    elif u"ch" in test_name and u"mif" in test_name and u"dcr" in test_name:
        domain = u"nf_service_density_cnfc"
    elif u"pl" in test_name and u"mif" in test_name and u"dcr" in test_name:
        domain = u"nf_service_density_cnfp"
    elif u"ipsec" in test_name:
        domain = u"ipsec"
        if u"sw" in test_name:
            bsf += u"-sw"
        elif u"hw" in test_name:
            bsf += u"-hw"
    elif u"ethip4vxlan" in test_name:
        domain = u"ip4_tunnels"
    elif u"ethip4udpgeneve" in test_name:
        domain = u"ip4_tunnels"
    elif u"ip4base" in test_name or u"ip4scale" in test_name:
        domain = u"ip4"
    elif u"ip6base" in test_name or u"ip6scale" in test_name:
        domain = u"ip6"
    elif u"l2xcbase" in test_name or \
            u"l2xcscale" in test_name or \
            u"l2bdbasemaclrn" in test_name or \
            u"l2bdscale" in test_name or \
            u"l2patch" in test_name:
        domain = u"l2"
    else:
        domain = u""

    file_name = u"-".join((domain, testbed, nic)) + u".html#"
    anchor_name = u"-".join((frame_size, cores, bsf, driver))

    return file_name + anchor_name


def table_perf_trending_dash_html(table, input_data):
    """Generate the table(s) with algorithm:
    table_perf_trending_dash_html specified in the specification
    file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: dict
    :type input_data: InputData
    """

    _ = input_data

    if not table.get(u"testbed", None):
        logging.error(
            f"The testbed is not defined for the table "
            f"{table.get(u'title', u'')}. Skipping."
        )
        return

    test_type = table.get(u"test-type", u"MRR")
    if test_type not in (u"MRR", u"NDR", u"PDR"):
        logging.error(
            f"Test type {table.get(u'test-type', u'MRR')} is not defined. "
            f"Skipping."
        )
        return

    if test_type in (u"NDR", u"PDR"):
        lnk_dir = u"../ndrpdr_trending/"
        lnk_sufix = f"-{test_type.lower()}"
    else:
        lnk_dir = u"../trending/"
        lnk_sufix = u""

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    try:
        with open(table[u"input-file"], u'rt') as csv_file:
            csv_lst = list(csv.reader(csv_file, delimiter=u',', quotechar=u'"'))
    except FileNotFoundError as err:
        logging.warning(f"{err}")
        return
    except KeyError:
        logging.warning(u"The input file is not defined.")
        return
    except csv.Error as err:
        logging.warning(
            f"Not possible to process the file {table[u'input-file']}.\n"
            f"{repr(err)}"
        )
        return

    # Table:
    dashboard = ET.Element(u"table", attrib=dict(width=u"100%", border=u'0'))

    # Table header:
    trow = ET.SubElement(dashboard, u"tr", attrib=dict(bgcolor=u"#7eade7"))
    for idx, item in enumerate(csv_lst[0]):
        alignment = u"left" if idx == 0 else u"center"
        thead = ET.SubElement(trow, u"th", attrib=dict(align=alignment))
        thead.text = item

    # Rows:
    colors = {
        u"regression": (
            u"#ffcccc",
            u"#ff9999"
        ),
        u"progression": (
            u"#c6ecc6",
            u"#9fdf9f"
        ),
        u"normal": (
            u"#e9f1fb",
            u"#d4e4f7"
        )
    }
    for r_idx, row in enumerate(csv_lst[1:]):
        if int(row[4]):
            color = u"regression"
        elif int(row[5]):
            color = u"progression"
        else:
            color = u"normal"
        trow = ET.SubElement(
            dashboard, u"tr", attrib=dict(bgcolor=colors[color][r_idx % 2])
        )

        # Columns:
        for c_idx, item in enumerate(row):
            tdata = ET.SubElement(
                trow,
                u"td",
                attrib=dict(align=u"left" if c_idx == 0 else u"center")
            )
            # Name:
            if c_idx == 0 and table.get(u"add-links", True):
                ref = ET.SubElement(
                    tdata,
                    u"a",
                    attrib=dict(
                        href=f"{lnk_dir}"
                        f"{_generate_url(table.get(u'testbed', ''), item)}"
                        f"{lnk_sufix}"
                    )
                )
                ref.text = item
            else:
                tdata.text = item
    try:
        with open(table[u"output-file"], u'w') as html_file:
            logging.info(f"    Writing file: {table[u'output-file']}")
            html_file.write(u".. raw:: html\n\n\t")
            html_file.write(str(ET.tostring(dashboard, encoding=u"unicode")))
            html_file.write(u"\n\t<p><br><br></p>\n")
    except KeyError:
        logging.warning(u"The output file is not defined.")
        return


def table_last_failed_tests(table, input_data):
    """Generate the table(s) with algorithm: table_last_failed_tests
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )

    data = input_data.filter_data(table, continue_on_error=True)

    if data is None or data.empty:
        logging.warning(
            f"    No data for the {table.get(u'type', u'')} "
            f"{table.get(u'title', u'')}."
        )
        return

    tbl_list = list()
    for job, builds in table[u"data"].items():
        for build in builds:
            build = str(build)
            try:
                version = input_data.metadata(job, build).get(u"version", u"")
                duration = \
                    input_data.metadata(job, build).get(u"elapsedtime", u"")
            except KeyError:
                logging.error(f"Data for {job}: {build} is not present.")
                return
            tbl_list.append(build)
            tbl_list.append(version)
            failed_tests = list()
            passed = 0
            failed = 0
            for tst_data in data[job][build].values:
                if tst_data[u"status"] != u"FAIL":
                    passed += 1
                    continue
                failed += 1
                groups = re.search(REGEX_NIC, tst_data[u"parent"])
                if not groups:
                    continue
                nic = groups.group(0)
                failed_tests.append(f"{nic}-{tst_data[u'name']}")
            tbl_list.append(passed)
            tbl_list.append(failed)
            tbl_list.append(duration)
            tbl_list.extend(failed_tests)

    file_name = f"{table[u'output-file']}{table[u'output-file-ext']}"
    logging.info(f"    Writing file: {file_name}")
    with open(file_name, u"wt") as file_handler:
        for test in tbl_list:
            file_handler.write(f"{test}\n")


def table_failed_tests(table, input_data):
    """Generate the table(s) with algorithm: table_failed_tests
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )
    data = input_data.filter_data(table, continue_on_error=True)

    test_type = u"MRR"
    if u"NDRPDR" in table.get(u"filter", list()):
        test_type = u"NDRPDR"

    # Prepare the header of the tables
    header = [
        u"Test Case",
        u"Failures [#]",
        u"Last Failure [Time]",
        u"Last Failure [VPP-Build-Id]",
        u"Last Failure [CSIT-Job-Build-Id]"
    ]

    # Generate the data for the table according to the model in the table
    # specification

    now = dt.utcnow()
    timeperiod = timedelta(int(table.get(u"window", 7)))

    tbl_dict = dict()
    for job, builds in table[u"data"].items():
        for build in builds:
            build = str(build)
            for tst_name, tst_data in data[job][build].items():
                if tst_name.lower() in table.get(u"ignore-list", list()):
                    continue
                if tbl_dict.get(tst_name, None) is None:
                    groups = re.search(REGEX_NIC, tst_data[u"parent"])
                    if not groups:
                        continue
                    nic = groups.group(0)
                    tbl_dict[tst_name] = {
                        u"name": f"{nic}-{tst_data[u'name']}",
                        u"data": OrderedDict()
                    }
                try:
                    generated = input_data.metadata(job, build).\
                        get(u"generated", u"")
                    if not generated:
                        continue
                    then = dt.strptime(generated, u"%Y%m%d %H:%M")
                    if (now - then) <= timeperiod:
                        tbl_dict[tst_name][u"data"][build] = (
                            tst_data[u"status"],
                            generated,
                            input_data.metadata(job, build).get(u"version",
                                                                u""),
                            build
                        )
                except (TypeError, KeyError) as err:
                    logging.warning(f"tst_name: {tst_name} - err: {repr(err)}")

    max_fails = 0
    tbl_lst = list()
    for tst_data in tbl_dict.values():
        fails_nr = 0
        fails_last_date = u""
        fails_last_vpp = u""
        fails_last_csit = u""
        for val in tst_data[u"data"].values():
            if val[0] == u"FAIL":
                fails_nr += 1
                fails_last_date = val[1]
                fails_last_vpp = val[2]
                fails_last_csit = val[3]
        if fails_nr:
            max_fails = fails_nr if fails_nr > max_fails else max_fails
            tbl_lst.append([
                tst_data[u"name"],
                fails_nr,
                fails_last_date,
                fails_last_vpp,
                f"{u'mrr-daily' if test_type == u'MRR' else u'ndrpdr-weekly'}"
                f"-build-{fails_last_csit}"
            ])

    tbl_lst.sort(key=lambda rel: rel[2], reverse=True)
    tbl_sorted = list()
    for nrf in range(max_fails, -1, -1):
        tbl_fails = [item for item in tbl_lst if item[1] == nrf]
        tbl_sorted.extend(tbl_fails)

    file_name = f"{table[u'output-file']}{table[u'output-file-ext']}"
    logging.info(f"    Writing file: {file_name}")
    with open(file_name, u"wt") as file_handler:
        file_handler.write(u",".join(header) + u"\n")
        for test in tbl_sorted:
            file_handler.write(u",".join([str(item) for item in test]) + u'\n')

    logging.info(f"    Writing file: {table[u'output-file']}.txt")
    convert_csv_to_pretty_txt(file_name, f"{table[u'output-file']}.txt")


def table_failed_tests_html(table, input_data):
    """Generate the table(s) with algorithm: table_failed_tests_html
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    _ = input_data

    if not table.get(u"testbed", None):
        logging.error(
            f"The testbed is not defined for the table "
            f"{table.get(u'title', u'')}. Skipping."
        )
        return

    test_type = table.get(u"test-type", u"MRR")
    if test_type not in (u"MRR", u"NDR", u"PDR", u"NDRPDR"):
        logging.error(
            f"Test type {table.get(u'test-type', u'MRR')} is not defined. "
            f"Skipping."
        )
        return

    if test_type in (u"NDRPDR", u"NDR", u"PDR"):
        lnk_dir = u"../ndrpdr_trending/"
        lnk_sufix = u"-pdr"
    else:
        lnk_dir = u"../trending/"
        lnk_sufix = u""

    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    try:
        with open(table[u"input-file"], u'rt') as csv_file:
            csv_lst = list(csv.reader(csv_file, delimiter=u',', quotechar=u'"'))
    except KeyError:
        logging.warning(u"The input file is not defined.")
        return
    except csv.Error as err:
        logging.warning(
            f"Not possible to process the file {table[u'input-file']}.\n"
            f"{repr(err)}"
        )
        return

    # Table:
    failed_tests = ET.Element(u"table", attrib=dict(width=u"100%", border=u'0'))

    # Table header:
    trow = ET.SubElement(failed_tests, u"tr", attrib=dict(bgcolor=u"#7eade7"))
    for idx, item in enumerate(csv_lst[0]):
        alignment = u"left" if idx == 0 else u"center"
        thead = ET.SubElement(trow, u"th", attrib=dict(align=alignment))
        thead.text = item

    # Rows:
    colors = (u"#e9f1fb", u"#d4e4f7")
    for r_idx, row in enumerate(csv_lst[1:]):
        background = colors[r_idx % 2]
        trow = ET.SubElement(
            failed_tests, u"tr", attrib=dict(bgcolor=background)
        )

        # Columns:
        for c_idx, item in enumerate(row):
            tdata = ET.SubElement(
                trow,
                u"td",
                attrib=dict(align=u"left" if c_idx == 0 else u"center")
            )
            # Name:
            if c_idx == 0 and table.get(u"add-links", True):
                ref = ET.SubElement(
                    tdata,
                    u"a",
                    attrib=dict(
                        href=f"{lnk_dir}"
                        f"{_generate_url(table.get(u'testbed', ''), item)}"
                        f"{lnk_sufix}"
                    )
                )
                ref.text = item
            else:
                tdata.text = item
    try:
        with open(table[u"output-file"], u'w') as html_file:
            logging.info(f"    Writing file: {table[u'output-file']}")
            html_file.write(u".. raw:: html\n\n\t")
            html_file.write(str(ET.tostring(failed_tests, encoding=u"unicode")))
            html_file.write(u"\n\t<p><br><br></p>\n")
    except KeyError:
        logging.warning(u"The output file is not defined.")
        return


def table_comparison(table, input_data):
    """Generate the table(s) with algorithm: table_comparison
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """
    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )

    columns = table.get(u"columns", None)
    if not columns:
        logging.error(
            f"No columns specified for {table.get(u'title', u'')}. Skipping."
        )
        return

    cols = list()
    for idx, col in enumerate(columns):
        if col.get(u"data-set", None) is None:
            logging.warning(f"No data for column {col.get(u'title', u'')}")
            continue
        tag = col.get(u"tag", None)
        data = input_data.filter_data(
            table,
            params=[
                u"throughput",
                u"result",
                u"latency",
                u"name",
                u"parent",
                u"tags"
            ],
            data=col[u"data-set"],
            continue_on_error=True
        )
        col_data = {
            u"title": col.get(u"title", f"Column{idx}"),
            u"data": dict()
        }
        for builds in data.values:
            for build in builds:
                for tst_name, tst_data in build.items():
                    if tag and tag not in tst_data[u"tags"]:
                        continue
                    tst_name_mod = \
                        _tpc_modify_test_name(tst_name, ignore_nic=True).\
                        replace(u"2n1l-", u"")
                    if col_data[u"data"].get(tst_name_mod, None) is None:
                        name = tst_data[u'name'].rsplit(u'-', 1)[0]
                        if u"across testbeds" in table[u"title"].lower() or \
                                u"across topologies" in table[u"title"].lower():
                            name = _tpc_modify_displayed_test_name(name)
                        col_data[u"data"][tst_name_mod] = {
                            u"name": name,
                            u"replace": True,
                            u"data": list(),
                            u"mean": None,
                            u"stdev": None
                        }
                    _tpc_insert_data(
                        target=col_data[u"data"][tst_name_mod],
                        src=tst_data,
                        include_tests=table[u"include-tests"]
                    )

        replacement = col.get(u"data-replacement", None)
        if replacement:
            rpl_data = input_data.filter_data(
                table,
                params=[
                    u"throughput",
                    u"result",
                    u"latency",
                    u"name",
                    u"parent",
                    u"tags"
                ],
                data=replacement,
                continue_on_error=True
            )
            for builds in rpl_data.values:
                for build in builds:
                    for tst_name, tst_data in build.items():
                        if tag and tag not in tst_data[u"tags"]:
                            continue
                        tst_name_mod = \
                            _tpc_modify_test_name(tst_name, ignore_nic=True).\
                            replace(u"2n1l-", u"")
                        if col_data[u"data"].get(tst_name_mod, None) is None:
                            name = tst_data[u'name'].rsplit(u'-', 1)[0]
                            if u"across testbeds" in table[u"title"].lower() \
                                    or u"across topologies" in \
                                    table[u"title"].lower():
                                name = _tpc_modify_displayed_test_name(name)
                            col_data[u"data"][tst_name_mod] = {
                                u"name": name,
                                u"replace": False,
                                u"data": list(),
                                u"mean": None,
                                u"stdev": None
                            }
                        if col_data[u"data"][tst_name_mod][u"replace"]:
                            col_data[u"data"][tst_name_mod][u"replace"] = False
                            col_data[u"data"][tst_name_mod][u"data"] = list()
                        _tpc_insert_data(
                            target=col_data[u"data"][tst_name_mod],
                            src=tst_data,
                            include_tests=table[u"include-tests"]
                        )

        if table[u"include-tests"] in (u"NDR", u"PDR") or \
                u"latency" in table[u"include-tests"]:
            for tst_name, tst_data in col_data[u"data"].items():
                if tst_data[u"data"]:
                    tst_data[u"mean"] = mean(tst_data[u"data"])
                    tst_data[u"stdev"] = stdev(tst_data[u"data"])

        cols.append(col_data)

    tbl_dict = dict()
    for col in cols:
        for tst_name, tst_data in col[u"data"].items():
            if tbl_dict.get(tst_name, None) is None:
                tbl_dict[tst_name] = {
                    "name": tst_data[u"name"]
                }
            tbl_dict[tst_name][col[u"title"]] = {
                u"mean": tst_data[u"mean"],
                u"stdev": tst_data[u"stdev"]
            }

    if not tbl_dict:
        logging.warning(f"No data for table {table.get(u'title', u'')}!")
        return

    tbl_lst = list()
    for tst_data in tbl_dict.values():
        row = [tst_data[u"name"], ]
        for col in cols:
            row.append(tst_data.get(col[u"title"], None))
        tbl_lst.append(row)

    comparisons = table.get(u"comparisons", None)
    rcas = list()
    if comparisons and isinstance(comparisons, list):
        for idx, comp in enumerate(comparisons):
            try:
                col_ref = int(comp[u"reference"])
                col_cmp = int(comp[u"compare"])
            except KeyError:
                logging.warning(u"Comparison: No references defined! Skipping.")
                comparisons.pop(idx)
                continue
            if not (0 < col_ref <= len(cols) and 0 < col_cmp <= len(cols) or
                    col_ref == col_cmp):
                logging.warning(f"Wrong values of reference={col_ref} "
                                f"and/or compare={col_cmp}. Skipping.")
                comparisons.pop(idx)
                continue
            rca_file_name = comp.get(u"rca-file", None)
            if rca_file_name:
                try:
                    with open(rca_file_name, u"r") as file_handler:
                        rcas.append(
                            {
                                u"title": f"RCA{idx + 1}",
                                u"data": load(file_handler, Loader=FullLoader)
                            }
                        )
                except (YAMLError, IOError) as err:
                    logging.warning(
                        f"The RCA file {rca_file_name} does not exist or "
                        f"it is corrupted!"
                    )
                    logging.debug(repr(err))
                    rcas.append(None)
            else:
                rcas.append(None)
    else:
        comparisons = None

    tbl_cmp_lst = list()
    if comparisons:
        for row in tbl_lst:
            new_row = deepcopy(row)
            for comp in comparisons:
                ref_itm = row[int(comp[u"reference"])]
                if ref_itm is None and \
                        comp.get(u"reference-alt", None) is not None:
                    ref_itm = row[int(comp[u"reference-alt"])]
                cmp_itm = row[int(comp[u"compare"])]
                if ref_itm is not None and cmp_itm is not None and \
                        ref_itm[u"mean"] is not None and \
                        cmp_itm[u"mean"] is not None and \
                        ref_itm[u"stdev"] is not None and \
                        cmp_itm[u"stdev"] is not None:
                    try:
                        delta, d_stdev = relative_change_stdev(
                            ref_itm[u"mean"], cmp_itm[u"mean"],
                            ref_itm[u"stdev"], cmp_itm[u"stdev"]
                        )
                    except ZeroDivisionError:
                        break
                    if delta is None or math.isnan(delta):
                        break
                    new_row.append({
                        u"mean": delta * 1e6,
                        u"stdev": d_stdev * 1e6
                    })
                else:
                    break
            else:
                tbl_cmp_lst.append(new_row)

    try:
        tbl_cmp_lst.sort(key=lambda rel: rel[0], reverse=False)
        tbl_cmp_lst.sort(key=lambda rel: rel[-1][u'mean'], reverse=True)
    except TypeError as err:
        logging.warning(f"Empty data element in table\n{tbl_cmp_lst}\n{err}")

    tbl_for_csv = list()
    for line in tbl_cmp_lst:
        row = [line[0], ]
        for idx, itm in enumerate(line[1:]):
            if itm is None or not isinstance(itm, dict) or\
                    itm.get(u'mean', None) is None or \
                    itm.get(u'stdev', None) is None:
                row.append(u"NT")
                row.append(u"NT")
            else:
                row.append(round(float(itm[u'mean']) / 1e6, 3))
                row.append(round(float(itm[u'stdev']) / 1e6, 3))
        for rca in rcas:
            if rca is None:
                continue
            rca_nr = rca[u"data"].get(row[0], u"-")
            row.append(f"[{rca_nr}]" if rca_nr != u"-" else u"-")
        tbl_for_csv.append(row)

    header_csv = [u"Test Case", ]
    for col in cols:
        header_csv.append(f"Avg({col[u'title']})")
        header_csv.append(f"Stdev({col[u'title']})")
    for comp in comparisons:
        header_csv.append(
            f"Avg({comp.get(u'title', u'')})"
        )
        header_csv.append(
            f"Stdev({comp.get(u'title', u'')})"
        )
    for rca in rcas:
        if rca:
            header_csv.append(rca[u"title"])

    legend_lst = table.get(u"legend", None)
    if legend_lst is None:
        legend = u""
    else:
        legend = u"\n" + u"\n".join(legend_lst) + u"\n"

    footnote = u""
    if rcas and any(rcas):
        footnote += u"\nRoot Cause Analysis:\n"
        for rca in rcas:
            if rca:
                footnote += f"{rca[u'data'].get(u'footnote', u'')}\n"

    csv_file_name = f"{table[u'output-file']}-csv.csv"
    with open(csv_file_name, u"wt", encoding='utf-8') as file_handler:
        file_handler.write(
            u",".join([f'"{itm}"' for itm in header_csv]) + u"\n"
        )
        for test in tbl_for_csv:
            file_handler.write(
                u",".join([f'"{item}"' for item in test]) + u"\n"
            )
        if legend_lst:
            for item in legend_lst:
                file_handler.write(f'"{item}"\n')
        if footnote:
            for itm in footnote.split(u"\n"):
                file_handler.write(f'"{itm}"\n')

    tbl_tmp = list()
    max_lens = [0, ] * len(tbl_cmp_lst[0])
    for line in tbl_cmp_lst:
        row = [line[0], ]
        for idx, itm in enumerate(line[1:]):
            if itm is None or not isinstance(itm, dict) or \
                    itm.get(u'mean', None) is None or \
                    itm.get(u'stdev', None) is None:
                new_itm = u"NT"
            else:
                if idx < len(cols):
                    new_itm = (
                        f"{round(float(itm[u'mean']) / 1e6, 1)} "
                        f"\u00B1{round(float(itm[u'stdev']) / 1e6, 1)}".
                        replace(u"nan", u"NaN")
                    )
                else:
                    new_itm = (
                        f"{round(float(itm[u'mean']) / 1e6, 1):+} "
                        f"\u00B1{round(float(itm[u'stdev']) / 1e6, 1)}".
                        replace(u"nan", u"NaN")
                    )
            if len(new_itm.rsplit(u" ", 1)[-1]) > max_lens[idx]:
                max_lens[idx] = len(new_itm.rsplit(u" ", 1)[-1])
            row.append(new_itm)

        tbl_tmp.append(row)

    header = [u"Test Case", ]
    header.extend([col[u"title"] for col in cols])
    header.extend([comp.get(u"title", u"") for comp in comparisons])

    tbl_final = list()
    for line in tbl_tmp:
        row = [line[0], ]
        for idx, itm in enumerate(line[1:]):
            if itm in (u"NT", u"NaN"):
                row.append(itm)
                continue
            itm_lst = itm.rsplit(u"\u00B1", 1)
            itm_lst[-1] = \
                f"{u' ' * (max_lens[idx] - len(itm_lst[-1]))}{itm_lst[-1]}"
            itm_str = u"\u00B1".join(itm_lst)

            if idx >= len(cols):
                # Diffs
                rca = rcas[idx - len(cols)]
                if rca:
                    # Add rcas to diffs
                    rca_nr = rca[u"data"].get(row[0], None)
                    if rca_nr:
                        hdr_len = len(header[idx + 1]) - 1
                        if hdr_len < 19:
                            hdr_len = 19
                        rca_nr = f"[{rca_nr}]"
                        itm_str = (
                            f"{u' ' * (4 - len(rca_nr))}{rca_nr}"
                            f"{u' ' * (hdr_len - 4 - len(itm_str))}"
                            f"{itm_str}"
                        )
            row.append(itm_str)
        tbl_final.append(row)

    # Generate csv tables:
    csv_file_name = f"{table[u'output-file']}.csv"
    logging.info(f"    Writing the file {csv_file_name}")
    with open(csv_file_name, u"wt", encoding='utf-8') as file_handler:
        file_handler.write(u";".join(header) + u"\n")
        for test in tbl_final:
            file_handler.write(u";".join([str(item) for item in test]) + u"\n")

    # Generate txt table:
    txt_file_name = f"{table[u'output-file']}.txt"
    logging.info(f"    Writing the file {txt_file_name}")
    convert_csv_to_pretty_txt(csv_file_name, txt_file_name, delimiter=u";")

    with open(txt_file_name, u'a', encoding='utf-8') as file_handler:
        file_handler.write(legend)
        file_handler.write(footnote)

    # Generate html table:
    _tpc_generate_html_table(
        header,
        tbl_final,
        table[u'output-file'],
        legend=legend,
        footnote=footnote,
        sort_data=False,
        title=table.get(u"title", u"")
    )


def table_weekly_comparison(table, in_data):
    """Generate the table(s) with algorithm: table_weekly_comparison
    specified in the specification file.

    :param table: Table to generate.
    :param in_data: Data to process.
    :type table: pandas.Series
    :type in_data: InputData
    """
    logging.info(f"  Generating the table {table.get(u'title', u'')} ...")

    # Transform the data
    logging.info(
        f"    Creating the data set for the {table.get(u'type', u'')} "
        f"{table.get(u'title', u'')}."
    )

    incl_tests = table.get(u"include-tests", None)
    if incl_tests not in (u"NDR", u"PDR"):
        logging.error(f"Wrong tests to include specified ({incl_tests}).")
        return

    nr_cols = table.get(u"nr-of-data-columns", None)
    if not nr_cols or nr_cols < 2:
        logging.error(
            f"No columns specified for {table.get(u'title', u'')}. Skipping."
        )
        return

    data = in_data.filter_data(
        table,
        params=[u"throughput", u"result", u"name", u"parent", u"tags"],
        continue_on_error=True
    )

    header = [
        [u"VPP Version", ],
        [u"Start Timestamp", ],
        [u"CSIT Build", ],
        [u"CSIT Testbed", ]
    ]
    tbl_dict = dict()
    idx = 0
    tb_tbl = table.get(u"testbeds", None)
    for job_name, job_data in data.items():
        for build_nr, build in job_data.items():
            if idx >= nr_cols:
                break
            if build.empty:
                continue

            tb_ip = in_data.metadata(job_name, build_nr).get(u"testbed", u"")
            if tb_ip and tb_tbl:
                testbed = tb_tbl.get(tb_ip, u"")
            else:
                testbed = u""
            header[2].insert(1, build_nr)
            header[3].insert(1, testbed)
            header[1].insert(
                1, in_data.metadata(job_name, build_nr).get(u"generated", u"")
            )
            header[0].insert(
                1, in_data.metadata(job_name, build_nr).get(u"version", u"")
            )

            for tst_name, tst_data in build.items():
                tst_name_mod = \
                    _tpc_modify_test_name(tst_name).replace(u"2n1l-", u"")
                if not tbl_dict.get(tst_name_mod, None):
                    tbl_dict[tst_name_mod] = dict(
                        name=tst_data[u'name'].rsplit(u'-', 1)[0],
                    )
                try:
                    tbl_dict[tst_name_mod][-idx - 1] = \
                        tst_data[u"throughput"][incl_tests][u"LOWER"]
                except (TypeError, IndexError, KeyError, ValueError):
                    pass
            idx += 1

    if idx < nr_cols:
        logging.error(u"Not enough data to build the table! Skipping")
        return

    cmp_dict = dict()
    for idx, cmp in enumerate(table.get(u"comparisons", list())):
        idx_ref = cmp.get(u"reference", None)
        idx_cmp = cmp.get(u"compare", None)
        if idx_ref is None or idx_cmp is None:
            continue
        header[0].append(
            f"Diff({header[0][idx_ref - idx].split(u'~')[-1]} vs "
            f"{header[0][idx_cmp - idx].split(u'~')[-1]})"
        )
        header[1].append(u"")
        header[2].append(u"")
        header[3].append(u"")
        for tst_name, tst_data in tbl_dict.items():
            if not cmp_dict.get(tst_name, None):
                cmp_dict[tst_name] = list()
            ref_data = tst_data.get(idx_ref, None)
            cmp_data = tst_data.get(idx_cmp, None)
            if ref_data is None or cmp_data is None:
                cmp_dict[tst_name].append(float(u'nan'))
            else:
                cmp_dict[tst_name].append(
                    relative_change(ref_data, cmp_data)
                )

    tbl_lst_none = list()
    tbl_lst = list()
    for tst_name, tst_data in tbl_dict.items():
        itm_lst = [tst_data[u"name"], ]
        for idx in range(nr_cols):
            item = tst_data.get(-idx - 1, None)
            if item is None:
                itm_lst.insert(1, None)
            else:
                itm_lst.insert(1, round(item / 1e6, 1))
        itm_lst.extend(
            [
                None if itm is None else round(itm, 1)
                for itm in cmp_dict[tst_name]
            ]
        )
        if str(itm_lst[-1]) == u"nan" or itm_lst[-1] is None:
            tbl_lst_none.append(itm_lst)
        else:
            tbl_lst.append(itm_lst)

    tbl_lst_none.sort(key=lambda rel: rel[0], reverse=False)
    tbl_lst.sort(key=lambda rel: rel[0], reverse=False)
    tbl_lst.sort(key=lambda rel: rel[-1], reverse=False)
    tbl_lst.extend(tbl_lst_none)

    # Generate csv table:
    csv_file_name = f"{table[u'output-file']}.csv"
    logging.info(f"    Writing the file {csv_file_name}")
    with open(csv_file_name, u"wt", encoding='utf-8') as file_handler:
        for hdr in header:
            file_handler.write(u",".join(hdr) + u"\n")
        for test in tbl_lst:
            file_handler.write(u",".join(
                [
                    str(item).replace(u"None", u"-").replace(u"nan", u"-").
                    replace(u"null", u"-") for item in test
                ]
            ) + u"\n")

    txt_file_name = f"{table[u'output-file']}.txt"
    logging.info(f"    Writing the file {txt_file_name}")
    convert_csv_to_pretty_txt(csv_file_name, txt_file_name, delimiter=u",")

    # Reorganize header in txt table
    txt_table = list()
    with open(txt_file_name, u"rt", encoding='utf-8') as file_handler:
        for line in list(file_handler):
            txt_table.append(line)
    try:
        txt_table.insert(5, txt_table.pop(2))
        with open(txt_file_name, u"wt", encoding='utf-8') as file_handler:
            file_handler.writelines(txt_table)
    except IndexError:
        pass

    # Generate html table:
    hdr_html = [
        u"<br>".join(row) for row in zip(*header)
    ]
    _tpc_generate_html_table(
        hdr_html,
        tbl_lst,
        table[u'output-file'],
        sort_data=True,
        title=table.get(u"title", u""),
        generate_rst=False
    )