summaryrefslogtreecommitdiffstats
path: root/src/vnet/l2/l2_learn.c
blob: afe7f478f8cdf4e107d2a10661197c39afae683d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*
 * l2_learn.c : layer 2 learning using l2fib
 *
 * Copyright (c) 2013 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <vlib/vlib.h>
#include <vnet/vnet.h>
#include <vnet/pg/pg.h>
#include <vnet/ethernet/ethernet.h>
#include <vlib/cli.h>

#include <vnet/l2/l2_input.h>
#include <vnet/l2/feat_bitmap.h>
#include <vnet/l2/l2_fib.h>
#include <vnet/l2/l2_learn.h>

#include <vppinfra/error.h>
#include <vppinfra/hash.h>

/**
 * @file
 * @brief Ethernet Bridge Learning.
 *
 * Populate the mac table with entries mapping the packet's source mac + bridge
 * domain ID to the input sw_if_index.
 *
 * Note that learning and forwarding are separate graph nodes. This means that
 * for a set of packets, all learning is performed first, then all nodes are
 * forwarded. The forwarding is done based on the end-state of the mac table,
 * instead of the state after each packet. Thus the forwarding results could
 * differ in certain cases (mac move tests), but this not expected to cause
 * problems in real-world networks. It is much simpler to separate learning
 * and forwarding into separate nodes.
 */


typedef struct
{
  u8 src[6];
  u8 dst[6];
  u32 sw_if_index;
  u16 bd_index;
} l2learn_trace_t;


/* packet trace format function */
static u8 *
format_l2learn_trace (u8 * s, va_list * args)
{
  CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
  CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
  l2learn_trace_t *t = va_arg (*args, l2learn_trace_t *);

  s = format (s, "l2-learn: sw_if_index %d dst %U src %U bd_index %d",
	      t->sw_if_index,
	      format_ethernet_address, t->dst,
	      format_ethernet_address, t->src, t->bd_index);
  return s;
}

static vlib_node_registration_t l2learn_node;

#define foreach_l2learn_error				\
_(L2LEARN,           "L2 learn packets")		\
_(MISS,              "L2 learn misses")			\
_(MAC_MOVE,          "L2 mac moves")			\
_(MAC_MOVE_VIOLATE,  "L2 mac move violations")		\
_(LIMIT,             "L2 not learned due to limit")	\
_(HIT,               "L2 learn hits")			\
_(FILTER_DROP,       "L2 filter mac drops")

typedef enum
{
#define _(sym,str) L2LEARN_ERROR_##sym,
  foreach_l2learn_error
#undef _
    L2LEARN_N_ERROR,
} l2learn_error_t;

static char *l2learn_error_strings[] = {
#define _(sym,string) string,
  foreach_l2learn_error
#undef _
};

typedef enum
{
  L2LEARN_NEXT_L2FWD,
  L2LEARN_NEXT_DROP,
  L2LEARN_N_NEXT,
} l2learn_next_t;


/** Perform learning on one packet based on the mac table lookup result. */

static_always_inline void
l2learn_process (vlib_node_runtime_t * node,
		 l2learn_main_t * msm,
		 u64 * counter_base,
		 vlib_buffer_t * b0,
		 u32 sw_if_index0,
		 l2fib_entry_key_t * key0,
		 l2fib_entry_key_t * cached_key,
		 u32 * bucket0,
		 l2fib_entry_result_t * result0, u32 * next0, u8 timestamp)
{
  u32 feature_bitmap;

  /* Set up the default next node (typically L2FWD) */

  /* Remove ourself from the feature bitmap */
  feature_bitmap = vnet_buffer (b0)->l2.feature_bitmap & ~L2INPUT_FEAT_LEARN;

  /* Save for next feature graph nodes */
  vnet_buffer (b0)->l2.feature_bitmap = feature_bitmap;

  /* Determine the next node */
  *next0 = feat_bitmap_get_next_node_index (msm->feat_next_node_index,
					    feature_bitmap);

  /* Check mac table lookup result */

  if (PREDICT_TRUE (result0->fields.sw_if_index == sw_if_index0))
    {
      /*
       * The entry was in the table, and the sw_if_index matched, the normal case
       */
      counter_base[L2LEARN_ERROR_HIT] += 1;
      if (PREDICT_FALSE (result0->fields.timestamp != timestamp))
	result0->fields.timestamp = timestamp;

    }
  else if (result0->raw == ~0)
    {

      /* The entry was not in table, so add it  */

      counter_base[L2LEARN_ERROR_MISS] += 1;

      if (msm->global_learn_count == msm->global_learn_limit)
	{
	  /*
	   * Global limit reached. Do not learn the mac but forward the packet.
	   * In the future, limits could also be per-interface or bridge-domain.
	   */
	  counter_base[L2LEARN_ERROR_LIMIT] += 1;
	  goto done;

	}
      else
	{
	  BVT (clib_bihash_kv) kv;
	  /* It is ok to learn */

	  result0->raw = 0;	/* clear all fields */
	  result0->fields.sw_if_index = sw_if_index0;
	  result0->fields.timestamp = timestamp;
	  kv.key = key0->raw;
	  kv.value = result0->raw;

	  BV (clib_bihash_add_del) (msm->mac_table, &kv, 1 /* is_add */ );

	  cached_key->raw = ~0;	/* invalidate the cache */
	  msm->global_learn_count++;
	}

    }
  else
    {

      /* The entry was in the table, but with the wrong sw_if_index mapping (mac move) */
      counter_base[L2LEARN_ERROR_MAC_MOVE] += 1;

      if (result0->fields.static_mac)
	{
	  /*
	   * Don't overwrite a static mac
	   * TODO: Check violation policy. For now drop the packet
	   */
	  b0->error = node->errors[L2LEARN_ERROR_MAC_MOVE_VIOLATE];
	  *next0 = L2LEARN_NEXT_DROP;
	}
      else
	{
	  /*
	   * Update the entry
	   * TODO: may want to rate limit mac moves
	   * TODO: check global/bridge domain/interface learn limits
	   */
	  BVT (clib_bihash_kv) kv;

	  result0->raw = 0;	/* clear all fields */
	  result0->fields.sw_if_index = sw_if_index0;
	  result0->fields.timestamp = timestamp;

	  kv.key = key0->raw;
	  kv.value = result0->raw;

	  cached_key->raw = ~0;	/* invalidate the cache */

	  BV (clib_bihash_add_del) (msm->mac_table, &kv, 1 /* is_add */ );
	}
    }

  if (result0->fields.filter)
    {
      /* drop packet because lookup matched a filter mac entry */

      if (*next0 != L2LEARN_NEXT_DROP)
	{
	  /* if we're not already dropping the packet, do it now */
	  b0->error = node->errors[L2LEARN_ERROR_FILTER_DROP];
	  *next0 = L2LEARN_NEXT_DROP;
	}
    }

done:
  return;
}


static_always_inline uword
l2learn_node_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
		     vlib_frame_t * frame, int do_trace)
{
  u32 n_left_from, *from, *to_next;
  l2learn_next_t next_index;
  l2learn_main_t *msm = &l2learn_main;
  vlib_node_t *n = vlib_get_node (vm, l2learn_node.index);
  u32 node_counter_base_index = n->error_heap_index;
  vlib_error_main_t *em = &vm->error_main;
  l2fib_entry_key_t cached_key;
  l2fib_entry_result_t cached_result;
  u8 timestamp = (u8) (vlib_time_now (vm) / 60);

  from = vlib_frame_vector_args (frame);
  n_left_from = frame->n_vectors;	/* number of packets to process */
  next_index = node->cached_next_index;

  /* Clear the one-entry cache in case mac table was updated */
  cached_key.raw = ~0;
  cached_result.raw = ~0;	/* warning be gone */

  while (n_left_from > 0)
    {
      u32 n_left_to_next;

      /* get space to enqueue frame to graph node "next_index" */
      vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);

      while (n_left_from >= 8 && n_left_to_next >= 4)
	{
	  u32 bi0, bi1, bi2, bi3;
	  vlib_buffer_t *b0, *b1, *b2, *b3;
	  u32 next0, next1, next2, next3;
	  u32 sw_if_index0, sw_if_index1, sw_if_index2, sw_if_index3;
	  ethernet_header_t *h0, *h1, *h2, *h3;
	  l2fib_entry_key_t key0, key1, key2, key3;
	  l2fib_entry_result_t result0, result1, result2, result3;
	  u32 bucket0, bucket1, bucket2, bucket3;

	  /* Prefetch next iteration. */
	  {
	    vlib_buffer_t *p4, *p5, *p6, *p7;;

	    p4 = vlib_get_buffer (vm, from[4]);
	    p5 = vlib_get_buffer (vm, from[5]);
	    p6 = vlib_get_buffer (vm, from[6]);
	    p7 = vlib_get_buffer (vm, from[7]);

	    vlib_prefetch_buffer_header (p4, LOAD);
	    vlib_prefetch_buffer_header (p5, LOAD);
	    vlib_prefetch_buffer_header (p6, LOAD);
	    vlib_prefetch_buffer_header (p7, LOAD);

	    CLIB_PREFETCH (p4->data, CLIB_CACHE_LINE_BYTES, STORE);
	    CLIB_PREFETCH (p5->data, CLIB_CACHE_LINE_BYTES, STORE);
	    CLIB_PREFETCH (p6->data, CLIB_CACHE_LINE_BYTES, STORE);
	    CLIB_PREFETCH (p7->data, CLIB_CACHE_LINE_BYTES, STORE);
	  }

	  /* speculatively enqueue b0 and b1 to the current next frame */
	  /* bi is "buffer index", b is pointer to the buffer */
	  to_next[0] = bi0 = from[0];
	  to_next[1] = bi1 = from[1];
	  to_next[2] = bi2 = from[2];
	  to_next[3] = bi3 = from[3];
	  from += 4;
	  to_next += 4;
	  n_left_from -= 4;
	  n_left_to_next -= 4;

	  b0 = vlib_get_buffer (vm, bi0);
	  b1 = vlib_get_buffer (vm, bi1);
	  b2 = vlib_get_buffer (vm, bi2);
	  b3 = vlib_get_buffer (vm, bi3);

	  /* RX interface handles */
	  sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX];
	  sw_if_index1 = vnet_buffer (b1)->sw_if_index[VLIB_RX];
	  sw_if_index2 = vnet_buffer (b2)->sw_if_index[VLIB_RX];
	  sw_if_index3 = vnet_buffer (b3)->sw_if_index[VLIB_RX];

	  /* Process 4 x pkts */

	  h0 = vlib_buffer_get_current (b0);
	  h1 = vlib_buffer_get_current (b1);
	  h2 = vlib_buffer_get_current (b2);
	  h3 = vlib_buffer_get_current (b3);

	  if (do_trace)
	    {
	      if (b0->flags & VLIB_BUFFER_IS_TRACED)
		{
		  l2learn_trace_t *t =
		    vlib_add_trace (vm, node, b0, sizeof (*t));
		  t->sw_if_index = sw_if_index0;
		  t->bd_index = vnet_buffer (b0)->l2.bd_index;
		  clib_memcpy (t->src, h0->src_address, 6);
		  clib_memcpy (t->dst, h0->dst_address, 6);
		}
	      if (b1->flags & VLIB_BUFFER_IS_TRACED)
		{
		  l2learn_trace_t *t =
		    vlib_add_trace (vm, node, b1, sizeof (*t));
		  t->sw_if_index = sw_if_index1;
		  t->bd_index = vnet_buffer (b1)->l2.bd_index;
		  clib_memcpy (t->src, h1->src_address, 6);
		  clib_memcpy (t->dst, h1->dst_address, 6);
		}
	      if (b2->flags & VLIB_BUFFER_IS_TRACED)
		{
		  l2learn_trace_t *t =
		    vlib_add_trace (vm, node, b2, sizeof (*t));
		  t->sw_if_index = sw_if_index2;
		  t->bd_index = vnet_buffer (b2)->l2.bd_index;
		  clib_memcpy (t->src, h2->src_address, 6);
		  clib_memcpy (t->dst, h2->dst_address, 6);
		}
	      if (b3->flags & VLIB_BUFFER_IS_TRACED)
		{
		  l2learn_trace_t *t =
		    vlib_add_trace (vm, node, b3, sizeof (*t));
		  t->sw_if_index = sw_if_index3;
		  t->bd_index = vnet_buffer (b3)->l2.bd_index;
		  clib_memcpy (t->src, h3->src_address, 6);
		  clib_memcpy (t->dst, h3->dst_address, 6);
		}
	    }

	  /* process 4 pkts */
	  vlib_node_increment_counter (vm, l2learn_node.index,
				       L2LEARN_ERROR_L2LEARN, 4);

	  l2fib_lookup_4 (msm->mac_table, &cached_key, &cached_result,
			  h0->src_address,
			  h1->src_address,
			  h2->src_address,
			  h3->src_address,
			  vnet_buffer (b0)->l2.bd_index,
			  vnet_buffer (b1)->l2.bd_index,
			  vnet_buffer (b2)->l2.bd_index,
			  vnet_buffer (b3)->l2.bd_index,
			  &key0, &key1, &key2, &key3,
			  &bucket0, &bucket1, &bucket2, &bucket3,
			  &result0, &result1, &result2, &result3);

	  l2learn_process (node, msm, &em->counters[node_counter_base_index],
			   b0, sw_if_index0, &key0, &cached_key,
			   &bucket0, &result0, &next0, timestamp);

	  l2learn_process (node, msm, &em->counters[node_counter_base_index],
			   b1, sw_if_index1, &key1, &cached_key,
			   &bucket1, &result1, &next1, timestamp);

	  l2learn_process (node, msm, &em->counters[node_counter_base_index],
			   b2, sw_if_index2, &key2, &cached_key,
			   &bucket2, &result2, &next2, timestamp);

	  l2learn_process (node, msm, &em->counters[node_counter_base_index],
			   b3, sw_if_index3, &key3, &cached_key,
			   &bucket3, &result3, &next3, timestamp);

	  /* verify speculative enqueues, maybe switch current next frame */
	  /* if next0==next1==next_index then nothing special needs to be done */
	  vlib_validate_buffer_enqueue_x4 (vm, node, next_index,
					   to_next, n_left_to_next,
					   bi0, bi1, bi2, bi3,
					   next0, next1, next2, next3);
	}

      while (n_left_from > 0 && n_left_to_next > 0)
	{
	  u32 bi0;
	  vlib_buffer_t *b0;
	  u32 next0;
	  u32 sw_if_index0;
	  ethernet_header_t *h0;
	  l2fib_entry_key_t key0;
	  l2fib_entry_result_t result0;
	  u32 bucket0;

	  /* speculatively enqueue b0 to the current next frame */
	  bi0 = from[0];
	  to_next[0] = bi0;
	  from += 1;
	  to_next += 1;
	  n_left_from -= 1;
	  n_left_to_next -= 1;

	  b0 = vlib_get_buffer (vm, bi0);

	  sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX];

	  h0 = vlib_buffer_get_current (b0);

	  if (do_trace && PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED))
	    {
	      l2learn_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t));
	      t->sw_if_index = sw_if_index0;
	      t->bd_index = vnet_buffer (b0)->l2.bd_index;
	      clib_memcpy (t->src, h0->src_address, 6);
	      clib_memcpy (t->dst, h0->dst_address, 6);
	    }

	  /* process 1 pkt */
	  vlib_node_increment_counter (vm, l2learn_node.index,
				       L2LEARN_ERROR_L2LEARN, 1);


	  l2fib_lookup_1 (msm->mac_table, &cached_key, &cached_result,
			  h0->src_address, vnet_buffer (b0)->l2.bd_index,
			  &key0, &bucket0, &result0);

	  l2learn_process (node, msm, &em->counters[node_counter_base_index],
			   b0, sw_if_index0, &key0, &cached_key,
			   &bucket0, &result0, &next0, timestamp);

	  /* verify speculative enqueue, maybe switch current next frame */
	  vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
					   to_next, n_left_to_next,
					   bi0, next0);
	}

      vlib_put_next_frame (vm, node, next_index, n_left_to_next);
    }

  return frame->n_vectors;
}

static uword
l2learn_node_fn (vlib_main_t * vm,
		 vlib_node_runtime_t * node, vlib_frame_t * frame)
{
  if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE)))
    return l2learn_node_inline (vm, node, frame, 1 /* do_trace */ );
  return l2learn_node_inline (vm, node, frame, 0 /* do_trace */ );
}

/* *INDENT-OFF* */
VLIB_REGISTER_NODE (l2learn_node,static) = {
  .function = l2learn_node_fn,
  .name = "l2-learn",
  .vector_size = sizeof (u32),
  .format_trace = format_l2learn_trace,
  .type = VLIB_NODE_TYPE_INTERNAL,

  .n_errors = ARRAY_LEN(l2learn_error_strings),
  .error_strings = l2learn_error_strings,

  .n_next_nodes = L2LEARN_N_NEXT,

  /* edit / add dispositions here */
  .next_nodes = {
        [L2LEARN_NEXT_DROP] = "error-drop",
        [L2LEARN_NEXT_L2FWD] = "l2-fwd",
  },
};
/* *INDENT-ON* */

VLIB_NODE_FUNCTION_MULTIARCH (l2learn_node, l2learn_node_fn)
     clib_error_t *l2learn_init (vlib_main_t * vm)
{
  l2learn_main_t *mp = &l2learn_main;

  mp->vlib_main = vm;
  mp->vnet_main = vnet_get_main ();

  /* Initialize the feature next-node indexes */
  feat_bitmap_init_next_nodes (vm,
			       l2learn_node.index,
			       L2INPUT_N_FEAT,
			       l2input_get_feat_names (),
			       mp->feat_next_node_index);

  /* init the hash table ptr */
  mp->mac_table = get_mac_table ();

  /*
   * Set the default number of dynamically learned macs to the number
   * of buckets.
   */
  mp->global_learn_limit = L2FIB_NUM_BUCKETS * 16;

  return 0;
}

VLIB_INIT_FUNCTION (l2learn_init);


/**
 * Set subinterface learn enable/disable.
 * The CLI format is:
 *    set interface l2 learn <interface> [disable]
 */
static clib_error_t *
int_learn (vlib_main_t * vm,
	   unformat_input_t * input, vlib_cli_command_t * cmd)
{
  vnet_main_t *vnm = vnet_get_main ();
  clib_error_t *error = 0;
  u32 sw_if_index;
  u32 enable;

  if (!unformat_user (input, unformat_vnet_sw_interface, vnm, &sw_if_index))
    {
      error = clib_error_return (0, "unknown interface `%U'",
				 format_unformat_error, input);
      goto done;
    }

  enable = 1;
  if (unformat (input, "disable"))
    {
      enable = 0;
    }

  /* set the interface flag */
  l2input_intf_bitmap_enable (sw_if_index, L2INPUT_FEAT_LEARN, enable);

done:
  return error;
}

/*?
 * Layer 2 learning can be enabled and disabled on each
 * interface and on each bridge-domain. Use this command to
 * manage interfaces. It is enabled by default.
 *
 * @cliexpar
 * Example of how to enable learning:
 * @cliexcmd{set interface l2 learn GigabitEthernet0/8/0}
 * Example of how to disable learning:
 * @cliexcmd{set interface l2 learn GigabitEthernet0/8/0 disable}
?*/
/* *INDENT-OFF* */
VLIB_CLI_COMMAND (int_learn_cli, static) = {
  .path = "set interface l2 learn",
  .short_help = "set interface l2 learn <interface> [disable]",
  .function = int_learn,
};
/* *INDENT-ON* */


static clib_error_t *
l2learn_config (vlib_main_t * vm, unformat_input_t * input)
{
  l2learn_main_t *mp = &l2learn_main;

  while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
    {
      if (unformat (input, "limit %d", &mp->global_learn_limit))
	;

      else
	return clib_error_return (0, "unknown input `%U'",
				  format_unformat_error, input);
    }

  return 0;
}

VLIB_CONFIG_FUNCTION (l2learn_config, "l2learn");


/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
class="o">* vec) { elt_t *new; u8 hash; hash = compute_vec_hash (0, vec); new = vec_dup (vec); ASSERT (compute_vec_hash (hash, new) == 0); validate_vec (new, 0); return new; } static elt_t * validate_vec_zero (elt_t * vec) { u8 *ptr; u8 *end; vec_zero (vec); ptr = (u8 *) vec; end = (u8 *) (vec + vec_len (vec)); while (ptr != end) { ASSERT (ptr < (u8 *) vec_end (vec)); ASSERT (ptr[0] == 0); ptr++; } validate_vec (vec, 0); return vec; } static void validate_vec_is_equal (elt_t * vec) { elt_t *new = NULL; if (vec_len (vec) <= 0) return; new = vec_dup (vec); ASSERT (vec_is_equal (new, vec)); vec_free (new); } static elt_t * validate_vec_set (elt_t * vec) { uword i; uword len = vec_len (vec); elt_t *new; if (!vec) return NULL; new = create_random_vec (elt_t, 1, g_seed); VERBOSE3 ("%U\n", format_hex_bytes, new, vec_len (new) * sizeof (new[0])); vec_set (vec, new[0]); for (i = 0; i < len; i++) ASSERT (memcmp (&vec[i], &new[0], sizeof (vec[0])) == 0); vec_free (new); validate_vec (vec, 0); return vec; } static elt_t * validate_vec_validate (elt_t * vec, uword index) { uword len = vec_len (vec); word num_new = index - len + 1; u8 *ptr; u8 *end; u8 hash = compute_vec_hash (0, vec); if (num_new < 0) num_new = 0; vec_validate (vec, index); /* Old len but new vec pointer! */ ptr = (u8 *) (vec + len); end = (u8 *) (vec + len + num_new); ASSERT (len + num_new == vec_len (vec)); ASSERT (compute_vec_hash (hash, vec) == 0); while (ptr != end) { ASSERT (ptr < (u8 *) vec_end (vec)); ASSERT (ptr[0] == 0); ptr++; } validate_vec (vec, 0); return vec; } static elt_t * validate_vec_init (uword num_elts) { u8 *ptr; u8 *end; uword len; elt_t *new; new = vec_new (elt_t, num_elts); len = vec_len (new); ASSERT (len == num_elts); ptr = (u8 *) new; end = (u8 *) (new + len); while (ptr != end) { ASSERT (ptr < (u8 *) vec_end (new)); ASSERT (ptr[0] == 0); ptr++; } validate_vec (new, 0); return new; } static elt_t * validate_vec_init_h (uword num_elts, uword hdr_bytes) { uword i = 0; u8 *ptr; u8 *end; uword len; elt_t *new; new = vec_new_ha (elt_t, num_elts, hdr_bytes, 0); len = vec_len (new); ASSERT (len == num_elts); /* We have 2 zero-regions to check: header & vec data (skip _VEC struct). */ for (i = 0; i < 2; i++) { if (i == 0) { ptr = (u8 *) vec_header (new, hdr_bytes); end = ptr + hdr_bytes; } else { ptr = (u8 *) new; end = (u8 *) (new + len); } while (ptr != end) { ASSERT (ptr < (u8 *) vec_end (new)); ASSERT (ptr[0] == 0); ptr++; } } validate_vec (new, 1); return new; } /* XXX - I don't understand the purpose of the vec_clone() call. */ static elt_t * validate_vec_clone (elt_t * vec) { elt_t *new; vec_clone (new, vec); ASSERT (vec_len (new) == vec_len (vec)); ASSERT (compute_vec_hash (0, new) == 0); validate_vec (new, 0); return new; } static elt_t * validate_vec_append (elt_t * vec) { elt_t *new; uword num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); uword len; u8 hash = 0; new = create_random_vec (elt_t, num_elts, g_seed); len = vec_len (vec) + vec_len (new); hash = compute_vec_hash (0, vec); hash = compute_vec_hash (hash, new); vec_append (vec, new); vec_free (new); ASSERT (vec_len (vec) == len); ASSERT (compute_vec_hash (hash, vec) == 0); validate_vec (vec, 0); return vec; } static elt_t * validate_vec_prepend (elt_t * vec) { elt_t *new; uword num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); uword len; u8 hash = 0; new = create_random_vec (elt_t, num_elts, g_seed); len = vec_len (vec) + vec_len (new); hash = compute_vec_hash (0, vec); hash = compute_vec_hash (hash, new); vec_prepend (vec, new); vec_free (new); ASSERT (vec_len (vec) == len); ASSERT (compute_vec_hash (hash, vec) == 0); validate_vec (vec, 0); return vec; } static void run_validator_wh (uword iter) { elt_t *vec; uword i; uword op; uword num_elts; uword len; uword dump_time; f64 time[3]; /* [0]: start, [1]: last, [2]: current */ vec = create_random_vec_wh (elt_t, ~0, sizeof (hdr_t), g_seed); validate_vec (vec, 0); VERBOSE2 ("Start with len %d\n", vec_len (vec)); time[0] = unix_time_now (); time[1] = time[0]; dump_time = g_dump_period; for (i = 1; i <= iter; i++) { if (i >= g_set_verbose_at) g_verbose = 2; op = bounded_random_u32 (&g_seed, 0, vec_len (g_prob_wh) - 1); op = g_prob_wh[op]; switch (op) { case OP_IS_VEC_INIT_H: num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); vec_free_h (vec, sizeof (hdr_t)); VERBOSE2 ("vec_init_h(), new elts %d\n", num_elts); vec = validate_vec_init_h (num_elts, sizeof (hdr_t)); break; case OP_IS_VEC_RESIZE_H: len = vec_len (vec); num_elts = bounded_random_u32 (&g_seed, len, len + MAX_CHANGE); VERBOSE2 ("vec_resize_h(), %d new elts.\n", num_elts); vec = validate_vec_resize_h (vec, num_elts, sizeof (hdr_t)); break; case OP_IS_VEC_FREE_H: VERBOSE2 ("vec_free_h()\n"); vec = validate_vec_free_h (vec, sizeof (hdr_t)); break; default: ASSERT (0); break; } g_call_stats[op]++; if (i == dump_time) { time[2] = unix_time_now (); VERBOSE1 ("%d vec ops in %f secs. (last %d in %f secs.).\n", i, time[2] - time[0], g_dump_period, time[2] - time[1]); time[1] = time[2]; dump_time += g_dump_period; VERBOSE1 ("vec len %d\n", vec_len (vec)); VERBOSE2 ("%U\n\n", format_hex_bytes, vec, vec_len (vec) * sizeof (vec[0])); } VERBOSE2 ("len %d\n", vec_len (vec)); } validate_vec (vec, sizeof (hdr_t)); vec_free_h (vec, sizeof (hdr_t)); } static void run_validator (uword iter) { elt_t *vec; elt_t *new; uword i; uword op; uword num_elts; uword index; uword len; uword dump_time; f64 time[3]; /* [0]: start, [1]: last, [2]: current */ vec = create_random_vec (elt_t, ~0, g_seed); validate_vec (vec, 0); VERBOSE2 ("Start with len %d\n", vec_len (vec)); time[0] = unix_time_now (); time[1] = time[0]; dump_time = g_dump_period; for (i = 1; i <= iter; i++) { if (i >= g_set_verbose_at) g_verbose = 2; op = bounded_random_u32 (&g_seed, 0, vec_len (g_prob) - 1); op = g_prob[op]; switch (op) { case OP_IS_VEC_RESIZE: len = vec_len (vec); num_elts = bounded_random_u32 (&g_seed, len, len + MAX_CHANGE); VERBOSE2 ("vec_resize(), %d new elts.\n", num_elts); vec = validate_vec_resize (vec, num_elts); break; case OP_IS_VEC_ADD1: VERBOSE2 ("vec_add1()\n"); vec = validate_vec_add1 (vec); break; case OP_IS_VEC_ADD2: num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); VERBOSE2 ("vec_add2(), %d new elts.\n", num_elts); vec = validate_vec_add2 (vec, num_elts); break; case OP_IS_VEC_ADD: num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); VERBOSE2 ("vec_add(), %d new elts.\n", num_elts); vec = validate_vec_add (vec, num_elts); break; case OP_IS_VEC_INSERT: len = vec_len (vec); num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); index = bounded_random_u32 (&g_seed, 0, (len > 0) ? (len - 1) : (0)); VERBOSE2 ("vec_insert(), %d new elts, index %d.\n", num_elts, index); vec = validate_vec_insert (vec, num_elts, index); break; case OP_IS_VEC_INSERT_ELTS: len = vec_len (vec); num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); index = bounded_random_u32 (&g_seed, 0, (len > 0) ? (len - 1) : (0)); VERBOSE2 ("vec_insert_elts(), %d new elts, index %d.\n", num_elts, index); vec = validate_vec_insert_elts (vec, num_elts, index); break; case OP_IS_VEC_DELETE: len = vec_len (vec); index = bounded_random_u32 (&g_seed, 0, len - 1); num_elts = bounded_random_u32 (&g_seed, 0, (len > index) ? (len - index) : (0)); VERBOSE2 ("vec_delete(), %d elts, index %d.\n", num_elts, index); vec = validate_vec_delete (vec, num_elts, index); break; case OP_IS_VEC_DUP: VERBOSE2 ("vec_dup()\n"); new = validate_vec_dup (vec); vec_free (new); break; case OP_IS_VEC_IS_EQUAL: VERBOSE2 ("vec_is_equal()\n"); validate_vec_is_equal (vec); break; case OP_IS_VEC_ZERO: VERBOSE2 ("vec_zero()\n"); vec = validate_vec_zero (vec); break; case OP_IS_VEC_SET: VERBOSE2 ("vec_set()\n"); vec = validate_vec_set (vec); break; case OP_IS_VEC_VALIDATE: len = vec_len (vec); index = bounded_random_u32 (&g_seed, 0, len - 1 + MAX_CHANGE); VERBOSE2 ("vec_validate(), index %d\n", index); vec = validate_vec_validate (vec, index); break; case OP_IS_VEC_FREE: VERBOSE2 ("vec_free()\n"); vec = validate_vec_free (vec); break; case OP_IS_VEC_INIT: num_elts = bounded_random_u32 (&g_seed, 0, MAX_CHANGE); vec_free (vec); VERBOSE2 ("vec_init(), new elts %d\n", num_elts); vec = validate_vec_init (num_elts); break; case OP_IS_VEC_CLONE: VERBOSE2 ("vec_clone()\n"); new = validate_vec_clone (vec); vec_free (new); break; case OP_IS_VEC_APPEND: VERBOSE2 ("vec_append()\n"); vec = validate_vec_append (vec); break; case OP_IS_VEC_PREPEND: VERBOSE2 ("vec_prepend()\n"); vec = validate_vec_prepend (vec); break; default: ASSERT (0); break; } g_call_stats[op]++; if (i == dump_time) { time[2] = unix_time_now (); VERBOSE1 ("%d vec ops in %f secs. (last %d in %f secs.).\n", i, time[2] - time[0], g_dump_period, time[2] - time[1]); time[1] = time[2]; dump_time += g_dump_period; VERBOSE1 ("vec len %d\n", vec_len (vec)); VERBOSE2 ("%U\n\n", format_hex_bytes, vec, vec_len (vec) * sizeof (vec[0])); } VERBOSE2 ("len %d\n", vec_len (vec)); } validate_vec (vec, 0); vec_free (vec); } static void prob_init (void) { uword i, j, ratio, len, index; /* Create the vector to implement the statistical profile: vec [ op1 op1 op1 op2 op3 op3 op3 op4 op4 .... ] */ for (i = FIRST_VEC_OP; i <= LAST_VEC_OP; i++) { ratio = g_prob_ratio[i]; if (ratio <= 0) continue; len = vec_len (g_prob); index = len - 1 + ratio; ASSERT (index >= 0); /* Pre-allocate new elements. */ vec_validate (g_prob, index); for (j = len; j <= index; j++) g_prob[j] = i; } /* Operations on vectors with headers. */ for (i = FIRST_VEC_HDR_OP; i <= LAST_VEC_HDR_OP; i++) { ratio = g_prob_ratio[i]; if (ratio <= 0) continue; len = vec_len (g_prob_wh); index = len - 1 + ratio; ASSERT (index >= 0); /* Pre-allocate new elements. */ vec_validate (g_prob_wh, index); for (j = len; j <= index; j++) g_prob_wh[j] = i; } VERBOSE3 ("prob_vec, len %d\n%U\n", vec_len (g_prob), format_hex_bytes, g_prob, vec_len (g_prob) * sizeof (g_prob[0])); VERBOSE3 ("prob_vec_wh, len %d\n%U\n", vec_len (g_prob_wh), format_hex_bytes, g_prob_wh, vec_len (g_prob_wh) * sizeof (g_prob_wh[0])); } static void prob_free (void) { vec_free (g_prob); vec_free (g_prob_wh); } int vl (void *v) { return vec_len (v); } int test_vec_main (unformat_input_t * input) { uword iter = 1000; uword help = 0; uword big = 0; uword align = 0; uword ugly = 0; while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) { if (0 == unformat (input, "iter %d", &iter) && 0 == unformat (input, "seed %d", &g_seed) && 0 == unformat (input, "verbose %d", &g_verbose) && 0 == unformat (input, "set %d", &g_set_verbose_at) && 0 == unformat (input, "dump %d", &g_dump_period) && 0 == unformat (input, "help %=", &help, 1) && 0 == unformat (input, "big %=", &big, 1) && 0 == unformat (input, "ugly %d", &ugly) && 0 == unformat (input, "align %=", &align, 1)) { clib_error ("unknown input `%U'", format_unformat_error, input); goto usage; } } /* Cause a deliberate heap botch */ if (ugly) { u8 *overrun_me = 0; int i; vec_validate (overrun_me, 31); for (i = 0; i < vec_len (overrun_me) + ugly; i++) overrun_me[i] = i; vec_free (overrun_me); } if (big) { u8 *bigboy = 0; u64 one_gig = (1 << 30); u64 size; u64 index; fformat (stdout, "giant vector test..."); size = 5ULL * one_gig; vec_validate (bigboy, size); for (index = size; index >= 0; index--) bigboy[index] = index & 0xff; return 0; } if (align) { u8 *v = 0; vec_validate_aligned (v, 9, CLIB_CACHE_LINE_BYTES); fformat (stdout, "v = 0x%llx, aligned %llx\n", v, ((uword) v) & ~(CLIB_CACHE_LINE_BYTES - 1)); vec_free (v); } if (help) goto usage; prob_init (); run_validator (iter); run_validator_wh (iter); if (verbose) dump_call_stats (g_call_stats); prob_free (); if (verbose) { memory_snap (); } return 0; usage: fformat (stdout, "Usage: test_vec iter <N> seed <N> verbose <N> " "set <N> dump <N>\n"); if (help) return 0; return -1; } #ifdef CLIB_UNIX int main (int argc, char *argv[]) { unformat_input_t i; int ret; clib_mem_init (0, 3ULL << 30); // mheap_alloc (0, (uword) 10ULL << 30); verbose = (argc > 1); unformat_init_command_line (&i, argv); ret = test_vec_main (&i); unformat_free (&i); return ret; } #endif /* CLIB_UNIX */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */