summaryrefslogtreecommitdiffstats
path: root/src/vnet/mpls/mpls.api
blob: 5d85812807aecab5dc800e3afa60d15f18233e38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

@media only all and (prefers-color-scheme: dark) {
.highlight .hll { background-color: #49483e }
.highlight .c { color: #75715e } /* Comment */
.highlight .err { color: #960050; background-color: #1e0010 } /* Error */
.highlight .k { color: #66d9ef } /* K
/*
 * Copyright (c) 2015-2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

option version = "1.1.0";
import "vnet/fib/fib_types.api";
import "vnet/ip/ip_types.api";

/** \brief Bind/Unbind an MPLS local label to an IP prefix. i.e. create
           a per-prefix label entry.
    @param client_index - opaque cookie to identify the sender
    @param context - sender context, to match reply w/ request
    @param mb_mpls_table_id - The MPLS table-id the MPLS entry will be added in
    @param mb_label - The MPLS label value to bind
    @param mb_ip_table_id - The IP table-id of the IP prefix to bind to.
    @param mb_is_bind - Bind or unbind
    @param mb_is_ip4 - The prefix to bind to is IPv4
    @param mb_address_length - Length of IP prefix
    @param mb_address[16] - IP prefix/
*/
autoreply define mpls_ip_bind_unbind
{
  u32 client_index;
  u32 context;
  u32 mb_mpls_table_id;
  u32 mb_label;
  u32 mb_ip_table_id;
  u8 mb_is_bind;
  vl_api_prefix_t mb_prefix;
};

typeonly define mpls_tunnel
{
  u32 mt_sw_if_index;
  u32 mt_tunnel_index;
  u8 mt_l2_only;
  u8 mt_is_multicast;
  u8 mt_n_paths;
  vl_api_fib_path_t mt_paths[mt_n_paths];
};
define mpls_tunnel_add_del
{
  u32 client_index;
  u32 context;
  u8 mt_is_add;
  vl_api_mpls_tunnel_t mt_tunnel;
};

/** \brief Reply for MPLS tunnel add / del request
    @param context - returned sender context, to match reply w/ request
    @param retval - return code
    @param sw_if_index - SW interface index of the tunnel created
*/
define mpls_tunnel_add_del_reply
{
  u32 context;
  i32 retval;
  u32 sw_if_index;
  u32 tunnel_index;
};

/** \brief Dump mpls eth tunnel table
    @param client_index - opaque cookie to identify the sender
    @param sw_if_index - sw_if_index of the MPLS tunnel
                         (as returned from the create)
*/
define mpls_tunnel_dump
{
  u32 client_index;
  u32 context;
  u32 sw_if_index;
};

/** \brief mpls tunnel details
*/
manual_endian manual_print define mpls_tunnel_details
{
  u32 context;
  vl_api_mpls_tunnel_t mt_tunnel;
};

/** \brief MPLS Route Add / del route
    @param client_index - opaque cookie to identify the sender
    @param context - sender context, to match reply w/ request
    @param mt_table_id - The MPLS table-id the route is added in
    @param mt_is_add - Is this a route add or delete
    @param mt_name - A client provided name/tag for the table. If this
                     is not set by the client, then VPP will generate
		     something meaningfull.
*/
typeonly define mpls_table
{
  u32 mt_table_id;
  u8  mt_name[64];
};
autoreply define mpls_table_add_del
{
  u32 client_index;
  u32 context;
  u8  mt_is_add;
  vl_api_mpls_table_t mt_table;
};

/** \brief Dump MPLS fib table
    @param client_index - opaque cookie to identify the sender
*/
define mpls_table_dump
{
  u32 client_index;
  u32 context;
};

define mpls_table_details
{
  u32 context;
  vl_api_mpls_table_t mt_table;
};

/** \brief MPLS Route
    @param mr_label - The MPLS label value
    @param mr_eos - The End of stack bit
    @param mr_eos_proto - If EOS then this is the DPO packect's proto post pop
    @param mr_table_id - The MPLS table-id the route is added in
    @param mr_is_add - Is this a route add or delete
    @param mr_is_multicast - Is this a multicast route
    @param mr_n_paths - The number of paths
    @param mr_paths - The paths
*/
typeonly define mpls_route
{
  u32 mr_table_id;
  u32 mr_label;
  u8 mr_eos;
  u8 mr_eos_proto;
  u8 mr_is_multicast;
  u8 mr_n_paths;
  vl_api_fib_path_t mr_paths[mr_n_paths];
};

/** \brief MPLS Route Add / del route
    @param client_index - opaque cookie to identify the sender
    @param context - sender context, to match reply w/ request
    @param mr_table_id - The MPLS table-id the route is added in
    @param mr_is_add - Is this a route add or delete
    @param mr_is_multipath - Is this route update a multipath - i.e. is this
                             a path addition to an existing route
    @param mr_route - The Route
*/
define mpls_route_add_del
{
  u32 client_index;
  u32 context;
  u8 mr_is_add;
  u8 mr_is_multipath;
  vl_api_mpls_route_t mr_route;
};

define mpls_route_add_del_reply
{
  u32 context;
  i32 retval;
  u32 stats_index;
};

/** \brief Dump MPLS fib table
    @param client_index - opaque cookie to identify the sender
*/
define mpls_route_dump
{
  u32 client_index;
  u32 context;
  vl_api_mpls_table_t table;
};

/** \brief mpls FIB table response
    @param table_id - MPLS fib table id
    @param s_bit - End-of-stack bit
    @param label - MPLS label value
    @param count - the number of fib_path in path
    @param path  - array of of fib_path structures
*/
manual_endian manual_print define mpls_route_details
{
  u32 context;
  vl_api_mpls_route_t mr_route;
};

/** \brief Enable or Disable MPLS on and interface
    @param client_index - opaque cookie to identify the sender
    @param context - sender context, to match reply w/ request
    @param sw_if_index - index of the interface
    @param enable - if non-zero enable, else disable
*/
autoreply define sw_interface_set_mpls_enable
{
  u32 client_index;
  u32 context;
  u32 sw_if_index;
  u8 enable;
};

/*
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
 
s **Go-libmemif** ships with two simple examples demonstrating the usage of the package with a detailed commentary. The examples can be found in the subdirectory [examples](./examples). #### Raw data (libmemif <-> libmemif) *raw-data* is a basic example showing how to create a memif interface, handle events through callbacks and perform Rx/Tx of raw data. Before handling an actual packets it is important to understand the skeleton of libmemif-based applications. Since VPP expects proper packet data, it is not very useful to connect *raw-data* example with VPP, even though it will work, since all the received data will get dropped on the VPP side. To create a connection of two raw-data instances, start two processes concurrently in an arbitrary order: - *master* memif: ``` $ cd extras/libmemif/examples/raw-data $ ./raw-data ``` - *slave* memif: ``` $ cd extras/libmemif/examples/raw-data $ ./raw-data --slave ``` Every 3 seconds both sides send 3 raw-data packets to the opposite end through each of the 3 queues. The received packets are printed to stdout. Stop an instance of *raw-data* with an interrupt signal (^C). #### Jumbo Frames Raw data (libmemif <-> libmemif) *jumbo-frames* is simple example how to send larger and larger jumbo packets with libmemif adapter. This is simple copy of *raw-data* but with sending larger packets, so for more information read its code and documentation. #### ICMP Responder *icmp-responder* is a simple example showing how to answer APR and ICMP echo requests through a memif interface. Package `google/gopacket` is used to decode and construct packets. The appropriate VPP configuration for the opposite memif is: ``` vpp$ create memif socket id 1 filename /tmp/icmp-responder-example vpp$ create interface memif id 1 socket-id 1 slave secret secret no-zero-copy vpp$ set int state memif1/1 up vpp$ set int ip address memif1/1 192.168.1.2/24 ``` To start the example, simply type: ``` root$ ./icmp-responder ``` *icmp-responder* needs to be run as root so that it can access the socket created by VPP. Normally, the memif interface is in the master mode. Pass CLI flag `--slave` to create memif in the slave mode: ``` root$ ./icmp-responder --slave ``` Don't forget to put the opposite memif into the master mode in that case. To verify the connection, run: ``` vpp$ ping 192.168.1.1 64 bytes from 192.168.1.1: icmp_seq=2 ttl=255 time=.6974 ms 64 bytes from 192.168.1.1: icmp_seq=3 ttl=255 time=.6310 ms 64 bytes from 192.168.1.1: icmp_seq=4 ttl=255 time=1.0350 ms 64 bytes from 192.168.1.1: icmp_seq=5 ttl=255 time=.5359 ms Statistics: 5 sent, 4 received, 20% packet loss vpp$ sh ip arp Time IP4 Flags Ethernet Interface 68.5648 192.168.1.1 D aa:aa:aa:aa:aa:aa memif0/1 ``` *Note*: it is expected that the first ping is shown as lost. It was actually converted to an ARP request. This is a VPP specific feature common to all interface types. Stop the example with an interrupt signal (^C). #### GoPacket ICMP Responder *gopacket* is a simple example showing how to answer APR and ICMP echo requests through a memif interface. This example is mostly identical to icmp-responder example, but it is using MemifPacketHandle API to read and write packets using gopacket API. The appropriate VPP configuration for the opposite memif is: ``` vpp$ create memif socket id 1 filename /tmp/gopacket-example vpp$ create interface memif id 1 socket-id 1 slave secret secret no-zero-copy vpp$ set int state memif1/1 up vpp$ set int ip address memif1/1 192.168.1.2/24 ``` To start the example, simply type: ``` root$ ./gopacket ``` gopacket needs to be run as root so that it can access the socket created by VPP. Normally, the memif interface is in the master mode. Pass CLI flag "--slave" to create memif in the slave mode: ``` root$ ./gopacket --slave ``` Don't forget to put the opposite memif into the master mode in that case. To verify the connection, run: ``` vpp$ ping 192.168.1.1 64 bytes from 192.168.1.1: icmp_seq=2 ttl=255 time=.6974 ms 64 bytes from 192.168.1.1: icmp_seq=3 ttl=255 time=.6310 ms 64 bytes from 192.168.1.1: icmp_seq=4 ttl=255 time=1.0350 ms 64 bytes from 192.168.1.1: icmp_seq=5 ttl=255 time=.5359 ms Statistics: 5 sent, 4 received, 20% packet loss vpp$ sh ip arp Time IP4 Flags Ethernet Interface 68.5648 192.168.1.1 D aa:aa:aa:aa:aa:aa memif0/1 ``` *Note*: it is expected that the first ping is shown as lost. It was actually converted to an ARP request. This is a VPP specific feature common to all interface types. Stop the example with an interrupt signal (^C).