summaryrefslogtreecommitdiffstats
path: root/src/vnet/session/application_interface.h
blob: d09432d0b522209c30afc7d3ebb4f7706c404f0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
 * Copyright (c) 2016-2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#ifndef __included_uri_h__
#define __included_uri_h__

#include <vlibmemory/api.h>
#include <svm/message_queue.h>
#include <vnet/session/session_types.h>
#include <vnet/tls/tls_test.h>
#include <svm/fifo_segment.h>

typedef struct certificate_
{
  u32 *app_interests;		/* vec of application index asking for deletion cb */
  u32 cert_key_index;		/* index in cert & key pool */
  u8 *key;
  u8 *cert;
} app_cert_key_pair_t;

typedef struct session_cb_vft_
{
  /** Notify server of new segment */
  int (*add_segment_callback) (u32 app_wrk_index, u64 segment_handle);

  /** Notify server of new segment */
  int (*del_segment_callback) (u32 app_wrk_index, u64 segment_handle);

  /** Notify server of newly accepted session */
  int (*session_accept_callback) (session_t * new_session);

  /** Connection request callback */
  int (*session_connected_callback) (u32 app_wrk_index, u32 opaque,
				     session_t * s, session_error_t code);

  /** Notify app that session is closing */
  void (*session_disconnect_callback) (session_t * s);

  /** Notify app that transport is closed */
  void (*session_transport_closed_callback) (session_t * s);

  /** Notify app that session or transport are about to be removed */
  void (*session_cleanup_callback) (session_t * s, session_cleanup_ntf_t ntf);

  /** Notify app that session was reset */
  void (*session_reset_callback) (session_t * s);

  /** Notify app that session pool migration happened */
  void (*session_migrate_callback) (session_t * s, session_handle_t new_sh);

  /** Direct RX callback for built-in application */
  int (*builtin_app_rx_callback) (session_t * session);

  /** Direct TX callback for built-in application */
  int (*builtin_app_tx_callback) (session_t * session);

  /** Cert and key pair delete notification */
  int (*app_cert_key_pair_delete_callback) (app_cert_key_pair_t * ckpair);

  /** Delegate fifo-tuning-logic to application */
  int (*fifo_tuning_callback) (session_t * s, svm_fifo_t * f,
			       session_ft_action_t act, u32 bytes);

} session_cb_vft_t;

#define foreach_app_init_args			\
  _(u32, api_client_index)			\
  _(u8 *, name)					\
  _(u64 *, options)				\
  _(u8 *, namespace_id)				\
  _(session_cb_vft_t *, session_cb_vft)		\
  _(u32, app_index)				\

typedef struct _vnet_app_attach_args_t
{
#define _(_type, _name) _type _name;
  foreach_app_init_args
#undef _
  ssvm_private_t * segment;
  svm_msg_q_t *app_evt_q;
  u64 segment_handle;
} vnet_app_attach_args_t;

typedef struct _vnet_app_detach_args_t
{
  u32 app_index;
  u32 api_client_index;
} vnet_app_detach_args_t;

typedef struct _vnet_bind_args_t
{
  union
  {
    session_endpoint_cfg_t sep_ext;
    session_endpoint_t sep;
    char *uri;
  };

  u32 app_index;
  u32 wrk_map_index;

  /*
   * Results
   */
  char *segment_name;
  u32 segment_name_length;
  u64 server_event_queue_address;
  u64 handle;
} vnet_listen_args_t;

typedef struct _vnet_unlisten_args_t
{
  union
  {
    char *uri;
    u64 handle;			/**< Session handle */
  };
  u32 app_index;		/**< Owning application index */
  u32 wrk_map_index;		/**< App's local pool worker index */
} vnet_unlisten_args_t;

typedef struct _vnet_connect_args
{
  union
  {
    session_endpoint_cfg_t sep_ext;
    session_endpoint_t sep;
    char *uri;
  };
  u32 app_index;
  u32 wrk_map_index;
  u32 api_context;

  session_handle_t session_handle;
} vnet_connect_args_t;

typedef struct _vnet_disconnect_args_t
{
  session_handle_t handle;
  u32 app_index;
} vnet_disconnect_args_t;

typedef struct _vnet_application_add_tls_cert_args_t
{
  u32 app_index;
  u8 *cert;
} vnet_app_add_tls_cert_args_t;

typedef struct _vnet_application_add_tls_key_args_t
{
  u32 app_index;
  u8 *key;
} vnet_app_add_tls_key_args_t;

typedef enum crypto_engine_type_
{
  CRYPTO_ENGINE_NONE,
  CRYPTO_ENGINE_OPENSSL,
  CRYPTO_ENGINE_MBEDTLS,
  CRYPTO_ENGINE_VPP,
  CRYPTO_ENGINE_PICOTLS,
  CRYPTO_ENGINE_LAST = CRYPTO_ENGINE_PICOTLS,
} crypto_engine_type_t;

typedef struct _vnet_app_add_cert_key_pair_args_
{
  u8 *cert;
  u8 *key;
  u32 index;
} vnet_app_add_cert_key_pair_args_t;

typedef struct crypto_ctx_
{
  u32 ctx_index;		/**< index in crypto context pool */
  u32 n_subscribers;		/**< refcount of sessions using said context */
  u32 ckpair_index;		/**< certificate & key */
  u8 crypto_engine;
  void *data;			/**< protocol specific data */
} crypto_context_t;

/* Application attach options */
typedef enum
{
  APP_OPTIONS_FLAGS,
  APP_OPTIONS_EVT_QUEUE_SIZE,
  APP_OPTIONS_SEGMENT_SIZE,
  APP_OPTIONS_ADD_SEGMENT_SIZE,
  APP_OPTIONS_PRIVATE_SEGMENT_COUNT,
  APP_OPTIONS_RX_FIFO_SIZE,
  APP_OPTIONS_TX_FIFO_SIZE,
  APP_OPTIONS_PREALLOC_FIFO_PAIRS,
  APP_OPTIONS_NAMESPACE,
  APP_OPTIONS_NAMESPACE_SECRET,
  APP_OPTIONS_PROXY_TRANSPORT,
  APP_OPTIONS_ACCEPT_COOKIE,
  APP_OPTIONS_TLS_ENGINE,
  APP_OPTIONS_MAX_FIFO_SIZE,
  APP_OPTIONS_HIGH_WATERMARK,
  APP_OPTIONS_LOW_WATERMARK,
  APP_OPTIONS_PCT_FIRST_ALLOC,
  APP_OPTIONS_N_OPTIONS
} app_attach_options_index_t;

#define foreach_app_options_flags				\
  _(ACCEPT_REDIRECT, "Use FIFO with redirects")			\
  _(ADD_SEGMENT, "Add segment and signal app if needed")	\
  _(IS_BUILTIN, "Application is builtin")			\
  _(IS_TRANSPORT_APP, "Application is a transport proto")	\
  _(IS_PROXY, "Application is proxying")			\
  _(USE_GLOBAL_SCOPE, "App can use global session scope")	\
  _(USE_LOCAL_SCOPE, "App can use local session scope")		\
  _(EVT_MQ_USE_EVENTFD, "Use eventfds for signaling")		\

typedef enum _app_options
{
#define _(sym, str) APP_OPTIONS_##sym,
  foreach_app_options_flags
#undef _
} app_options_t;

typedef enum _app_options_flags
{
#define _(sym, str) APP_OPTIONS_FLAGS_##sym = 1 << APP_OPTIONS_##sym,
  foreach_app_options_flags
#undef _
} app_options_flags_t;

#define foreach_fd_type						\
  _(VPP_MQ_SEGMENT, "Fd for vpp's event mq segment")		\
  _(MEMFD_SEGMENT, "Fd for memfd segment")			\
  _(MQ_EVENTFD, "Event fd used by message queue")		\
  _(VPP_MQ_EVENTFD, "Event fd used by vpp's message queue")	\

typedef enum session_fd_type_
{
#define _(sym, str) SESSION_FD_##sym,
  foreach_fd_type
#undef _
  SESSION_N_FD_TYPE
} session_fd_type_t;

typedef enum session_fd_flag_
{
#define _(sym, str) SESSION_FD_F_##sym = 1 << SESSION_FD_##sym,
  foreach_fd_type
#undef _
} session_fd_flag_t;

int parse_uri (char *uri, session_endpoint_cfg_t * sep);
int vnet_bind_uri (vnet_listen_args_t *);
int vnet_unbind_uri (vnet_unlisten_args_t * a);
int vnet_connect_uri (vnet_connect_args_t * a);

int vnet_application_attach (vnet_app_attach_args_t * a);
int vnet_application_detach (vnet_app_detach_args_t * a);
int vnet_listen (vnet_listen_args_t * a);
int vnet_connect (vnet_connect_args_t * a);
int vnet_unlisten (vnet_unlisten_args_t * a);
int vnet_disconnect_session (vnet_disconnect_args_t * a);

clib_error_t *vnet_app_add_tls_cert (vnet_app_add_tls_cert_args_t * a);
clib_error_t *vnet_app_add_tls_key (vnet_app_add_tls_key_args_t * a);
int vnet_app_add_cert_key_pair (vnet_app_add_cert_key_pair_args_t * a);
int vnet_app_del_cert_key_pair (u32 index);
/** Ask for app cb on pair deletion */
int vnet_app_add_cert_key_interest (u32 index, u32 app_index);

typedef struct app_session_transport_
{
  ip46_address_t rmt_ip;	/**< remote ip */
  ip46_address_t lcl_ip;	/**< local ip */
  u16 rmt_port;			/**< remote port (network order) */
  u16 lcl_port;			/**< local port (network order) */
  u8 is_ip4;			/**< set if uses ip4 networking */
} app_session_transport_t;

#define foreach_app_session_field					\
  _(svm_fifo_t, *rx_fifo)		/**< rx fifo */			\
  _(svm_fifo_t, *tx_fifo)		/**< tx fifo */			\
  _(session_type_t, session_type)	/**< session type */		\
  _(volatile u8, session_state)		/**< session state */		\
  _(u32, session_index)			/**< index in owning pool */	\
  _(app_session_transport_t, transport)	/**< transport info */		\
  _(svm_msg_q_t, *vpp_evt_q)		/**< vpp event queue  */	\
  _(u8, is_dgram)			/**< flag for dgram mode */	\

typedef struct
{
#define _(type, name) type name;
  foreach_app_session_field
#undef _
} app_session_t;

typedef struct session_listen_msg_
{
  u32 client_index;
  u32 context;			/* Not needed but keeping it for compatibility with bapi */
  u32 wrk_index;
  u32 vrf;
  u16 port;
  u8 proto;
  u8 is_ip4;
  ip46_address_t ip;
  u32 ckpair_index;
  u8 crypto_engine;
} __clib_packed session_listen_msg_t;

STATIC_ASSERT (sizeof (session_listen_msg_t) <= SESSION_CTRL_MSG_MAX_SIZE,
	       "msg too large");

typedef struct session_listen_uri_msg_
{
  u32 client_index;
  u32 context;
  u8 uri[56];
} __clib_packed session_listen_uri_msg_t;

STATIC_ASSERT (sizeof (session_listen_uri_msg_t) <= SESSION_CTRL_MSG_MAX_SIZE,
	       "msg too large");

typedef struct session_bound_msg_
{
  u32 context;
  u64 handle;
  i32 retval;
  u8 lcl_is_ip4;
  u8 lcl_ip[16];
  u16 lcl_port;
  uword rx_fifo;
  uword tx_fifo;
  uword vpp_evt_q;
  u32 segment_size;
  u8 segment_name_length;
  u8 segment_name[128];
} __clib_packed session_bound_msg_t;

typedef struct session_unlisten_msg_
{
  u32 client_index;
  u32 context;
  u32 wrk_index;
  session_handle_t handle;
} __clib_packed session_unlisten_msg_t;

typedef struct session_unlisten_reply_msg_
{
  u32 context;
  u64 handle;
  i32 retval;
} __clib_packed session_unlisten_reply_msg_t;

typedef struct session_accepted_msg_
{
  u32 context;
  u64 listener_handle;
  u64 handle;
  uword server_rx_fifo;
  uword server_tx_fifo;
  u64 segment_handle;
  uword vpp_event_queue_address;
  transport_endpoint_t rmt;
  u8 flags;
} __clib_packed session_accepted_msg_t;

typedef struct session_accepted_reply_msg_
{
  u32 context;
  i32 retval;
  u64 handle;
} __clib_packed session_accepted_reply_msg_t;

typedef struct session_connect_msg_
{
  u32 client_index;
  u32 context;
  u32 wrk_index;
  u32 vrf;
  u16 port;
  u16 lcl_port;
  u8 proto;
  u8 is_ip4;
  ip46_address_t ip;
  ip46_address_t lcl_ip;
  u8 hostname_len;
  u8 hostname[16];
  u64 parent_handle;
  u32 ckpair_index;
  u8 crypto_engine;
  u8 flags;
} __clib_packed session_connect_msg_t;

STATIC_ASSERT (sizeof (session_connect_msg_t) <= SESSION_CTRL_MSG_MAX_SIZE,
	       "msg too large");

typedef struct session_connect_uri_msg_
{
  u32 client_index;
  u32 context;
  u8 uri[56];
} __clib_packed session_connect_uri_msg_t;

STATIC_ASSERT (sizeof (session_connect_uri_msg_t) <=
	       SESSION_CTRL_MSG_MAX_SIZE, "msg too large");

typedef struct session_connected_msg_
{
  u32 context;
  i32 retval;
  u64 handle;
  uword server_rx_fifo;
  uword server_tx_fifo;
  u64 segment_handle;
  uword ct_rx_fifo;
  uword ct_tx_fifo;
  u64 ct_segment_handle;
  uword vpp_event_queue_address;
  u32 segment_size;
  u8 segment_name_length;
  u8 segment_name[64];
  transport_endpoint_t lcl;
} __clib_packed session_connected_msg_t;

typedef struct session_disconnect_msg_
{
  u32 client_index;
  u32 context;
  session_handle_t handle;
} __clib_packed session_disconnect_msg_t;

typedef struct session_disconnected_msg_
{
  u32 client_index;
  u32 context;
  u64 handle;
} __clib_packed session_disconnected_msg_t;

typedef struct session_disconnected_reply_msg_
{
  u32 context;
  i32 retval;
  u64 handle;
} __clib_packed session_disconnected_reply_msg_t;

typedef struct session_reset_msg_
{
  u32 client_index;
  u32 context;
  u64 handle;
} __clib_packed session_reset_msg_t;

typedef struct session_reset_reply_msg_
{
  u32 context;
  i32 retval;
  u64 handle;
} __clib_packed session_reset_reply_msg_t;

typedef struct session_req_worker_update_msg_
{
  u64 session_handle;
} __clib_packed session_req_worker_update_msg_t;

/* NOTE: using u16 for wrk indices because message needs to fit in 18B */
typedef struct session_worker_update_msg_
{
  u32 client_index;
  u16 wrk_index;
  u16 req_wrk_index;
  u64 handle;
} __clib_packed session_worker_update_msg_t;

typedef struct session_worker_update_reply_msg_
{
  u64 handle;
  uword rx_fifo;
  uword tx_fifo;
  u64 segment_handle;
} __clib_packed session_worker_update_reply_msg_t;

typedef struct session_app_detach_msg_
{
  u32 client_index;
  u32 context;
} session_app_detach_msg_t;

typedef struct app_map_another_segment_msg_
{
  u32 client_index;
  u32 context;
  u8 fd_flags;
  u32 segment_size;
  u8 segment_name[128];
  u64 segment_handle;
} session_app_add_segment_msg_t;

typedef struct app_unmap_segment_msg_
{
  u32 client_index;
  u32 context;
  u64 segment_handle;
} session_app_del_segment_msg_t;

typedef struct session_migrate_msg_
{
  uword vpp_evt_q;
  session_handle_t handle;
  session_handle_t new_handle;
  u32 vpp_thread_index;
} __clib_packed session_migrated_msg_t;

typedef struct session_cleanup_msg_
{
  session_handle_t handle;
} __clib_packed session_cleanup_msg_t;

typedef struct app_session_event_
{
  svm_msg_q_msg_t msg;
  session_event_t *evt;
} __clib_packed app_session_evt_t;

static inline void
app_alloc_ctrl_evt_to_vpp (svm_msg_q_t * mq, app_session_evt_t * app_evt,
			   u8 evt_type)
{
  svm_msg_q_lock_and_alloc_msg_w_ring (mq,
				       SESSION_MQ_CTRL_EVT_RING,
				       SVM_Q_WAIT, &app_evt->msg);
  app_evt->evt = svm_msg_q_msg_data (mq, &app_evt->msg);
  clib_memset (app_evt->evt, 0, sizeof (*app_evt->evt));
  app_evt->evt->event_type = evt_type;
}

static inline void
app_send_ctrl_evt_to_vpp (svm_msg_q_t * mq, app_session_evt_t * app_evt)
{
  svm_msg_q_add_and_unlock (mq, &app_evt->msg);
}

/**
 * Send fifo io event to vpp worker thread
 *
 * Because there may be multiple writers to one of vpp's queues, this
 * protects message allocation and enqueueing.
 *
 * @param mq		vpp message queue
 * @param f		fifo for which the event is sent
 * @param evt_type	type of event
 * @param noblock	flag to indicate is request is blocking or not
 * @return		0 if success, negative integer otherwise
 */
static inline int
app_send_io_evt_to_vpp (svm_msg_q_t * mq, u32 session_index, u8 evt_type,
			u8 noblock)
{
  session_event_t *evt;
  svm_msg_q_msg_t msg;

  if (noblock)
    {
      if (svm_msg_q_try_lock (mq))
	return -1;
      if (PREDICT_FALSE (svm_msg_q_ring_is_full (mq, SESSION_MQ_IO_EVT_RING)))
	{
	  svm_msg_q_unlock (mq);
	  return -2;
	}
      msg = svm_msg_q_alloc_msg_w_ring (mq, SESSION_MQ_IO_EVT_RING);
      evt = (session_event_t *) svm_msg_q_msg_data (mq, &msg);
      evt->session_index = session_index;
      evt->event_type = evt_type;
      svm_msg_q_add_and_unlock (mq, &msg);
      return 0;
    }
  else
    {
      svm_msg_q_lock (mq);
      while (svm_msg_q_ring_is_full (mq, SESSION_MQ_IO_EVT_RING)
	     || svm_msg_q_is_full (mq))
	svm_msg_q_wait (mq);
      msg = svm_msg_q_alloc_msg_w_ring (mq, SESSION_MQ_IO_EVT_RING);
      evt = (session_event_t *) svm_msg_q_msg_data (mq, &msg);
      evt->session_index = session_index;
      evt->event_type = evt_type;
      svm_msg_q_add_and_unlock (mq, &msg);
      return 0;
    }
}

always_inline int
app_send_dgram_raw (svm_fifo_t * f, app_session_transport_t * at,
		    svm_msg_q_t * vpp_evt_q, u8 * data, u32 len, u8 evt_type,
		    u8 do_evt, u8 noblock)
{
  u32 max_enqueue, actual_write;
  session_dgram_hdr_t hdr;
  int rv;

  max_enqueue = svm_fifo_max_enqueue_prod (f);
  if (max_enqueue < (sizeof (session_dgram_hdr_t) + len))
    return 0;

  max_enqueue -= sizeof (session_dgram_hdr_t);
  actual_write = clib_min (len, max_enqueue);
  hdr.data_length = actual_write;
  hdr.data_offset = 0;
  clib_memcpy_fast (&hdr.rmt_ip, &at->rmt_ip, sizeof (ip46_address_t));
  hdr.is_ip4 = at->is_ip4;
  hdr.rmt_port = at->rmt_port;
  clib_memcpy_fast (&hdr.lcl_ip, &at->lcl_ip, sizeof (ip46_address_t));
  hdr.lcl_port = at->lcl_port;
  rv = svm_fifo_enqueue (f, sizeof (hdr), (u8 *) & hdr);
  ASSERT (rv == sizeof (hdr));

  rv = svm_fifo_enqueue (f, actual_write, data);
  if (do_evt)
    {
      if (rv > 0 && svm_fifo_set_event (f))
	app_send_io_evt_to_vpp (vpp_evt_q, f->master_session_index, evt_type,
				noblock);
    }
  ASSERT (rv);
  return rv;
}

always_inline int
app_send_dgram (app_session_t * s, u8 * data, u32 len, u8 noblock)
{
  return app_send_dgram_raw (s->tx_fifo, &s->transport, s->vpp_evt_q, data,
			     len, SESSION_IO_EVT_TX, 1 /* do_evt */ ,
			     noblock);
}

always_inline int
app_send_stream_raw (svm_fifo_t * f, svm_msg_q_t * vpp_evt_q, u8 * data,
		     u32 len, u8 evt_type, u8 do_evt, u8 noblock)
{
  int rv;

  rv = svm_fifo_enqueue (f, len, data);
  if (do_evt)
    {
      if (rv > 0 && svm_fifo_set_event (f))
	app_send_io_evt_to_vpp (vpp_evt_q, f->master_session_index, evt_type,
				noblock);
    }
  return rv;
}

always_inline int
app_send_stream (app_session_t * s, u8 * data, u32 len, u8 noblock)
{
  return app_send_stream_raw (s->tx_fifo, s->vpp_evt_q, data, len,
			      SESSION_IO_EVT_TX, 1 /* do_evt */ , noblock);
}

always_inline int
app_send (app_session_t * s, u8 * data, u32 len, u8 noblock)
{
  if (s->is_dgram)
    return app_send_dgram (s, data, len, noblock);
  return app_send_stream (s, data, len, noblock);
}

always_inline int
app_recv_dgram_raw (svm_fifo_t * f, u8 * buf, u32 len,
		    app_session_transport_t * at, u8 clear_evt, u8 peek)
{
  session_dgram_pre_hdr_t ph;
  u32 max_deq;
  int rv;

  max_deq = svm_fifo_max_dequeue_cons (f);
  if (max_deq <= sizeof (session_dgram_hdr_t))
    {
      if (clear_evt)
	svm_fifo_unset_event (f);
      return 0;
    }

  if (clear_evt)
    svm_fifo_unset_event (f);

  svm_fifo_peek (f, 0, sizeof (ph), (u8 *) & ph);
  ASSERT (ph.data_length >= ph.data_offset);

  /* Check if we have the full dgram */
  if (max_deq < (ph.data_length + SESSION_CONN_HDR_LEN)
      && len >= ph.data_length)
    return 0;

  svm_fifo_peek (f, sizeof (ph), sizeof (*at), (u8 *) at);
  len = clib_min (len, ph.data_length - ph.data_offset);
  rv = svm_fifo_peek (f, ph.data_offset + SESSION_CONN_HDR_LEN, len, buf);
  if (peek)
    return rv;

  /* Discards data that did not fit in buffer */
  svm_fifo_dequeue_drop (f, ph.data_length + SESSION_CONN_HDR_LEN);

  return rv;
}

always_inline int
app_recv_dgram (app_session_t * s, u8 * buf, u32 len)
{
  return app_recv_dgram_raw (s->rx_fifo, buf, len, &s->transport, 1, 0);
}

always_inline int
app_recv_stream_raw (svm_fifo_t * f, u8 * buf, u32 len, u8 clear_evt, u8 peek)
{
  if (clear_evt)
    svm_fifo_unset_event (f);

  if (peek)
    return svm_fifo_peek (f, 0, len, buf);

  return svm_fifo_dequeue (f, len, buf);
}

always_inline int
app_recv_stream (app_session_t * s, u8 * buf, u32 len)
{
  return app_recv_stream_raw (s->rx_fifo, buf, len, 1, 0);
}

always_inline int
app_recv (app_session_t * s, u8 * data, u32 len)
{
  if (s->is_dgram)
    return app_recv_dgram (s, data, len);
  return app_recv_stream (s, data, len);
}

/* *INDENT-OFF* */
static char *session_error_str[] = {
#define _(sym, str) str,
    foreach_session_error
#undef _
};
/* *INDENT-ON* */

static inline u8 *
format_session_error (u8 * s, va_list * args)
{
  session_error_t error = va_arg (*args, session_error_t);
  if (-error >= 0 && -error < SESSION_N_ERRORS)
    s = format (s, "%s", session_error_str[-error]);
  else
    s = format (s, "invalid session err %u", -error);
  return s;
}
#endif /* __included_uri_h__ */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
>/* don't know how to handle such a child! */ } try_next_v: ; } } return 0; } static phash_tabb_t *sort_tabb; static int phash_tabb_compare (void *a1, void *a2) { u32 *b1 = a1; u32 *b2 = a2; phash_tabb_t *tb1, *tb2; tb1 = sort_tabb + b1[0]; tb2 = sort_tabb + b2[0]; return ((int) vec_len (tb2->keys) - (int) vec_len (tb1->keys)); } /* find a mapping that makes this a perfect hash */ static int perfect (phash_main_t * pm) { u32 i; /* clear any state from previous attempts */ if (vec_bytes (pm->tabh)) clib_memset (pm->tabh, ~0, vec_bytes (pm->tabh)); vec_validate (pm->tabb_sort, vec_len (pm->tabb) - 1); for (i = 0; i < vec_len (pm->tabb_sort); i++) pm->tabb_sort[i] = i; sort_tabb = pm->tabb; vec_sort_with_function (pm->tabb_sort, phash_tabb_compare); /* In descending order by number of keys, map all *b*s */ for (i = 0; i < vec_len (pm->tabb_sort); i++) { if (!augment (pm, pm->tabb_sort[i], i + 1)) return 0; } /* Success! We found a perfect hash of all keys into 0..nkeys-1. */ return 1; } /* * Find initial a_bits = log2 (a_max), b_bits = log2 (b_max). * Initial a_max and b_max values were found empirically. Some factors: * * If s_max<256 there is no scramble, so tab[b] needs to cover 0..s_max-1. * * a_max and b_max must be powers of 2 because the values in 0..a_max-1 and * 0..b_max-1 are produced by applying a bitmask to the initial hash function. * * a_max must be less than s_max, in fact less than n_keys, because otherwise * there would often be no i such that a^scramble[i] is in 0..n_keys-1 for * all the *a*s associated with a given *b*, so there would be no legal * value to assign to tab[b]. This only matters when we're doing a minimal * perfect hash. * * It takes around 800 trials to find distinct (a,b) with nkey=s_max*(5/8) * and a_max*b_max = s_max*s_max/32. * * Values of b_max less than s_max/4 never work, and s_max/2 always works. * * We want b_max as small as possible because it is the number of bytes in * the huge array we must create for the perfect hash. * * When nkey <= s_max*(5/8), b_max=s_max/4 works much more often with * a_max=s_max/8 than with a_max=s_max/4. Above s_max*(5/8), b_max=s_max/4 * doesn't seem to care whether a_max=s_max/8 or a_max=s_max/4. I think it * has something to do with 5/8 = 1/8 * 5. For example examine 80000, * 85000, and 90000 keys with different values of a_max. This only matters * if we're doing a minimal perfect hash. * * When a_max*b_max <= 1<<U32BITS, the initial hash must produce one integer. * Bigger than that it must produce two integers, which increases the * cost of the hash per character hashed. */ static void guess_initial_parameters (phash_main_t * pm) { u32 s_bits, s_max, a_max, b_max, n_keys; int is_minimal, is_fast_mode; const u32 b_max_use_scramble_threshold = 4096; is_minimal = (pm->flags & PHASH_FLAG_MINIMAL) != 0; is_fast_mode = (pm->flags & PHASH_FLAG_FAST_MODE) != 0; n_keys = vec_len (pm->keys); s_bits = max_log2 (n_keys); s_max = 1 << s_bits; a_max = 0; if (is_minimal) { switch (s_bits) { case 0: a_max = 1; b_max = 1; case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: /* * Was: a_max = is_minimal ? s_max / 2 : s_max; * However, we know that is_minimal must be true, so the * if-arm of the ternary expression is always executed. */ a_max = s_max / 2; b_max = s_max / 2; break; case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17: if (is_fast_mode) { a_max = s_max / 2; b_max = s_max / 4; } else if (s_max / 4 < b_max_use_scramble_threshold) { if (n_keys <= s_max * 0.52) a_max = b_max = s_max / 8; else a_max = b_max = s_max / 4; } else { a_max = ((n_keys <= s_max * (5.0 / 8.0)) ? s_max / 8 : (n_keys <= s_max * (3.0 / 4.0)) ? s_max / 4 : s_max / 2); b_max = s_max / 4; /* always give the small size a shot */ } break; case 18: if (is_fast_mode) a_max = b_max = s_max / 2; else { a_max = s_max / 8; /* never require the multiword hash */ b_max = (n_keys <= s_max * (5.0 / 8.0)) ? s_max / 4 : s_max / 2; } break; case 19: case 20: a_max = (n_keys <= s_max * (5.0 / 8.0)) ? s_max / 8 : s_max / 2; b_max = (n_keys <= s_max * (5.0 / 8.0)) ? s_max / 4 : s_max / 2; break; default: /* Just find a hash as quick as possible. We'll be thrashing virtual memory at this size. */ a_max = b_max = s_max / 2; break; } } else { /* Non-minimal perfect hash. */ if (is_fast_mode && n_keys > s_max * 0.8) { s_max *= 2; s_bits += 1; } if (s_max / 4 <= (1 << 14)) b_max = ((n_keys <= s_max * 0.56) ? s_max / 32 : (n_keys <= s_max * 0.74) ? s_max / 16 : s_max / 8); else b_max = ((n_keys <= s_max * 0.6) ? s_max / 16 : (n_keys <= s_max * 0.8) ? s_max / 8 : s_max / 4); if (is_fast_mode && b_max < s_max / 8) b_max = s_max / 8; if (a_max < 1) a_max = 1; if (b_max < 1) b_max = 1; } ASSERT (s_max == (1 << s_bits)); ASSERT (is_pow2 (a_max)); ASSERT (is_pow2 (b_max)); pm->s_bits = s_bits; pm->a_bits = min_log2 (a_max); pm->b_bits = min_log2 (b_max); if (b_max >= b_max_use_scramble_threshold) pm->flags |= PHASH_FLAG_USE_SCRAMBLE; } /* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */ /* permute(0)=0. This is intended and useful. */ always_inline u32 scramble_permute (u32 x, u32 nbits) { int i; int mask = (1 << nbits) - 1; int const2 = 1 + nbits / 2; int const3 = 1 + nbits / 3; int const4 = 1 + nbits / 4; int const5 = 1 + nbits / 5; for (i = 0; i < 20; i++) { x = (x + (x << const2)) & mask; x = (x ^ (x >> const3)); x = (x + (x << const4)) & mask; x = (x ^ (x >> const5)); } return x; } /* initialize scramble[] with distinct random values in 0..smax-1 */ static void scramble_init (phash_main_t * pm) { u32 i; /* fill scramble[] with distinct random integers in 0..smax-1 */ vec_validate (pm->scramble, (1 << (pm->s_bits < 8 ? 8 : pm->s_bits)) - 1); for (i = 0; i < vec_len (pm->scramble); i++) pm->scramble[i] = scramble_permute (i, pm->s_bits); } /* Try to find a perfect hash function. */ clib_error_t * phash_find_perfect_hash (phash_main_t * pm) { clib_error_t *error = 0; u32 max_a_bits, n_tries_this_a_b, want_minimal; /* guess initial values for s_max, a_max and b_max */ guess_initial_parameters (pm); want_minimal = pm->flags & PHASH_FLAG_MINIMAL; new_s: if (pm->b_bits == 0) pm->a_bits = pm->s_bits; max_a_bits = pm->s_bits - want_minimal; if (max_a_bits < 1) max_a_bits = 1; pm->hash_max = want_minimal ? vec_len (pm->keys) : (1 << pm->s_bits); scramble_init (pm); /* Allocate working memory. */ vec_free (pm->tabh); vec_validate_init_empty (pm->tabh, pm->hash_max - 1, ~0); vec_free (pm->tabq); vec_validate (pm->tabq, 1 << pm->b_bits); /* Actually find the perfect hash */ n_tries_this_a_b = 0; while (1) { /* Choose random hash seeds until keys become unique. */ pm->hash_seed = random_u64 (&pm->random_seed); pm->n_seed_trials++; if (init_tabb (pm)) { /* Found unique (A, B). */ /* Hash may already be perfect. */ if (pm->b_bits == 0) goto done; pm->n_perfect_calls++; if (perfect (pm)) goto done; goto increase_b; } /* Keep trying with different seed value. */ n_tries_this_a_b++; if (n_tries_this_a_b < 2048) continue; /* Try to put more bits in (A,B) to make distinct (A,B) more likely */ if (pm->a_bits < max_a_bits) pm->a_bits++; else if (pm->b_bits < pm->s_bits) { increase_b: vec_resize (pm->tabb, vec_len (pm->tabb)); vec_resize (pm->tabq, vec_len (pm->tabq)); pm->b_bits++; } else { /* Can't increase (A, B) any more, so try increasing S. */ goto new_s; } } done: /* Construct mapping table for hash lookups. */ if (!error) { u32 b, v; pm->a_shift = ((pm->flags & PHASH_FLAG_MIX64) ? 64 : 32) - pm->a_bits; pm->b_mask = (1 << pm->b_bits) - 1; vec_resize (pm->tab, vec_len (pm->tabb)); for (b = 0; b < vec_len (pm->tabb); b++) { v = pm->tabb[b].val_b; /* Apply scramble now for small enough value of b_bits. */ if (!(pm->flags & PHASH_FLAG_USE_SCRAMBLE)) v = pm->scramble[v]; pm->tab[b] = v; } } /* Free working memory. */ phash_main_free_working_memory (pm); return error; } /* Slow hash computation for general keys. */ uword phash_hash_slow (phash_main_t * pm, uword key) { u32 a, b, v; if (pm->flags & PHASH_FLAG_MIX64) { u64 x0, y0, z0; x0 = y0 = z0 = pm->hash_seed; if (pm->key_seed1) { u64 xyz[3]; pm->key_seed1 (pm->private, key, &xyz); x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; } else x0 += key; hash_mix64 (x0, y0, z0); a = z0 >> pm->a_shift; b = z0 & pm->b_mask; } else { u32 x0, y0, z0; x0 = y0 = z0 = pm->hash_seed; if (pm->key_seed1) { u32 xyz[3]; pm->key_seed1 (pm->private, key, &xyz); x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; } else x0 += key; hash_mix32 (x0, y0, z0); a = z0 >> pm->a_shift; b = z0 & pm->b_mask; } v = pm->tab[b]; if (pm->flags & PHASH_FLAG_USE_SCRAMBLE) v = pm->scramble[v]; return a ^ v; } /* Verify that perfect hash is perfect. */ clib_error_t * phash_validate (phash_main_t * pm) { phash_key_t *k; uword *unique_bitmap = 0; clib_error_t *error = 0; vec_foreach (k, pm->keys) { uword h = phash_hash_slow (pm, k->key); if (h >= pm->hash_max) { error = clib_error_return (0, "hash out of range %wd", h); goto done; } if (clib_bitmap_get (unique_bitmap, h)) { error = clib_error_return (0, "hash non-unique"); goto done; } unique_bitmap = clib_bitmap_ori (unique_bitmap, h); } done: clib_bitmap_free (unique_bitmap); return error; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */