1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* Copyright (c) 2018-2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/tcp/tcp.h>
#include <vnet/tcp/tcp_inlines.h>
#include <math.h>
#define beta_cubic 0.7
#define cubic_c 0.4
#define west_const (3 * (1 - beta_cubic) / (1 + beta_cubic))
typedef struct cubic_cfg_
{
u8 fast_convergence;
u32 ssthresh;
} cubic_cfg_t;
static cubic_cfg_t cubic_cfg = {
.fast_convergence = 1,
.ssthresh = 0x7FFFFFFFU,
};
typedef struct cubic_data_
{
/** time period (in seconds) needed to increase the current window
* size to W_max if there are no further congestion events */
f64 K;
/** time (in sec) since the start of current congestion avoidance */
f64 t_start;
/** Inflection point of the cubic function (in snd_mss segments) */
u32 w_max;
} __clib_packed cubic_data_t;
STATIC_ASSERT (sizeof (cubic_data_t) <= TCP_CC_DATA_SZ, "cubic data len");
static inline f64
cubic_time (u32 thread_index)
{
return tcp_time_now_us (thread_index);
}
/**
* RFC 8312 Eq. 1
*
* CUBIC window increase function. Time and K need to be provided in seconds.
*/
static inline u64
W_cubic (cubic_data_t * cd, f64 t)
{
f64 diff = t - cd->K;
/* W_cubic(t) = C*(t-K)^3 + W_max */
return cubic_c * diff * diff * diff + cd->w_max;
}
/**
* RFC 8312 Eq. 2
*/
static inline f64
K_cubic (cubic_data_t * cd, u32 wnd)
{
/* K = cubic_root(W_max*(1-beta_cubic)/C)
* Because the current window may be less than W_max * beta_cubic because
* of fast convergence, we pass it as parameter */
return pow ((f64) (cd->w_max - wnd) / cubic_c, 1 / 3.0);
}
/**
* RFC 8312 Eq. 4
*
* Estimates the window size of AIMD(alpha_aimd, beta_aimd) for
* alpha_aimd=3*(1-beta_cubic)/(1+beta_cubic) and beta_aimd=beta_cubic.
* Time (t) and rtt should be provided in seconds
*/
static inline u32
W_est (cubic_data_t * cd, f64 t, f64 rtt)
{
/* W_est(t) = W_max*beta_cubic+[3*(1-beta_cubic)/(1+beta_cubic)]*(t/RTT) */
return cd->w_max * beta_cubic + west_const * (t / rtt);
}
static void
cubic_congestion (tcp_connection_t * tc)
{
cubic_data_t *cd = (cubic_data_t *) tcp_cc_data (tc);
u32 w_max;
w_max = tc->cwnd / tc->snd_mss;
if (cubic_cfg.fast_convergence && w_max < cd->w_max)
w_max = w_max * ((1.0 + beta_cubic) / 2.0);
cd->w_max = w_max;
tc->ssthresh = clib_max (tc->cwnd * beta_cubic, 2 * tc->snd_mss);
tc->cwnd = tc->ssthresh;
}
static void
cubic_loss (tcp_connection_t * tc)
{
cubic_data_t *cd = (cubic_data_t *) tcp_cc_data (tc);
tc->cwnd = tcp_loss_wnd (tc);
cd->t_start = cubic_time (tc->c_thread_index);
cd->K = 0;
cd->w_max = tc->cwnd / tc->snd_mss;
}
static void
cubic_recovered (tcp_connection_t * tc)
{
cubic_data_t *cd = (cubic_data_t *) tcp_cc_data (tc);
cd->t_start = cubic_time (tc->c_thread_index);
tc->cwnd = tc->ssthresh;
cd->K = K_cubic (cd, tc->cwnd / tc->snd_mss);
}
static void
cubic_cwnd_accumulate (tcp_connection_t * tc, u32 thresh, u32 bytes_acked)
{
/* We just updated the threshold and don't know how large the previous
* one was. Still, optimistically increase cwnd by one segment and
* clear the accumulated bytes. */
if (tc->cwnd_acc_bytes > thresh)
{
tc->cwnd += tc->snd_mss;
tc->cwnd_acc_bytes = 0;
}
tcp_cwnd_accumulate (tc, thresh, bytes_acked);
}
static void
cubic_rcv_ack (tcp_connection_t * tc, tcp_rate_sample_t * rs)
{
cubic_data_t *cd = (cubic_data_t *) tcp_cc_data (tc);
u64 w_cubic, w_aimd;
f64 t, rtt_sec;
u32 thresh;
/* Constrained by tx fifo, can't grow further */
if (tc->cwnd >= tc->tx_fifo_size)
return;
if (tcp_in_slowstart (tc))
{
tc->cwnd += rs->delivered;
return;
}
t = cubic_time (tc->c_thread_index) - cd->t_start;
rtt_sec = clib_min (tc->mrtt_us, (f64) tc->srtt * TCP_TICK);
w_cubic = W_cubic (cd, t + rtt_sec) * tc->snd_mss;
w_aimd = (u64) W_est (cd, t, rtt_sec) * tc->snd_mss;
if (w_cubic < w_aimd)
{
cubic_cwnd_accumulate (tc, tc->cwnd, rs->delivered);
}
else
{
if (w_cubic > tc->cwnd)
{
/* For NewReno and slow start, we increment cwnd based on the
* number of bytes acked, not the number of acks received. In
* particular, for NewReno we increment the cwnd by 1 snd_mss
* only after we accumulate 1 cwnd of acked bytes (RFC 3465).
*
* For Cubic, as per RFC 8312 we should increment cwnd by
* (w_cubic - cwnd)/cwnd for each ack. Instead of using that,
* we compute the number of packets that need to be acked
* before adding snd_mss to cwnd and compute the threshold
*/
thresh = (tc->snd_mss * tc->cwnd) / (w_cubic - tc->cwnd);
/* Make sure we don't increase cwnd more often than every segment */
thresh = clib_max (thresh, tc->snd_mss);
}
else
{
/* Practically we can't increment so just inflate threshold */
thresh = 50 * tc->cwnd;
}
cubic_cwnd_accumulate (tc, thresh, rs->delivered);
}
}
static void
cubic_conn_init (tcp_connection_t * tc)
{
cubic_data_t *cd = (cubic_data_t *) tcp_cc_data (tc);
tc->ssthresh = cubic_cfg.ssthresh;
tc->cwnd = tcp_initial_cwnd (tc);
cd->w_max = 0;
cd->K = 0;
cd->t_start = cubic_time (tc->c_thread_index);
}
static uword
cubic_unformat_config (unformat_input_t * input)
{
u32 ssthresh = 0x7FFFFFFFU;
if (!input)
return 0;
unformat_skip_white_space (input);
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
if (unformat (input, "no-fast-convergence"))
cubic_cfg.fast_convergence = 0;
else if (unformat (input, "ssthresh %u", &ssthresh))
cubic_cfg.ssthresh = ssthresh;
else
return 0;
}
return 1;
}
void
cubic_event (tcp_connection_t *tc, tcp_cc_event_t evt)
{
cubic_data_t *cd;
f64 now;
if (evt != TCP_CC_EVT_START_TX)
return;
/* App was idle so update t_start to avoid artificially
* inflating cwnd if nothing recently sent and acked */
cd = (cubic_data_t *) tcp_cc_data (tc);
now = cubic_time (tc->c_thread_index);
if (now > tc->mrtt_us + 1)
cd->t_start = now;
}
const static tcp_cc_algorithm_t tcp_cubic = {
.name = "cubic",
.unformat_cfg = cubic_unformat_config,
.congestion = cubic_congestion,
.loss = cubic_loss,
.recovered = cubic_recovered,
.rcv_ack = cubic_rcv_ack,
.rcv_cong_ack = newreno_rcv_cong_ack,
.event = cubic_event,
.init = cubic_conn_init,
};
clib_error_t *
cubic_init (vlib_main_t * vm)
{
clib_error_t *error = 0;
tcp_cc_algo_register (TCP_CC_CUBIC, &tcp_cubic);
return error;
}
VLIB_INIT_FUNCTION (cubic_init);
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/
|