aboutsummaryrefslogtreecommitdiffstats
path: root/src/vnet/udp/udp_input.c
blob: 523ab029bd4b856197b3ae8b1e49dde56e758f50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
 * Copyright (c) 2016-2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <vlibmemory/api.h>
#include <vlib/vlib.h>

#include <vppinfra/hash.h>
#include <vppinfra/error.h>
#include <vppinfra/elog.h>

#include <vnet/vnet.h>
#include <vnet/ip/ip.h>
#include <vnet/udp/udp.h>
#include <vnet/udp/udp_packet.h>
#include <vnet/session/session.h>

static char *udp_error_strings[] = {
#define udp_error(n,s) s,
#include "udp_error.def"
#undef udp_error
};

typedef struct
{
  u32 connection;
  u32 disposition;
  u32 thread_index;
} udp_input_trace_t;

/* packet trace format function */
static u8 *
format_udp_input_trace (u8 * s, va_list * args)
{
  CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
  CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
  udp_input_trace_t *t = va_arg (*args, udp_input_trace_t *);

  s = format (s, "UDP_INPUT: connection %d, disposition %d, thread %d",
	      t->connection, t->disposition, t->thread_index);
  return s;
}

#define foreach_udp_input_next			\
  _ (DROP, "error-drop")

typedef enum
{
#define _(s, n) UDP_INPUT_NEXT_##s,
  foreach_udp_input_next
#undef _
    UDP_INPUT_N_NEXT,
} udp_input_next_t;

always_inline void
udp_input_inc_counter (vlib_main_t * vm, u8 is_ip4, u8 evt, u8 val)
{
  if (is_ip4)
    vlib_node_increment_counter (vm, udp4_input_node.index, evt, val);
  else
    vlib_node_increment_counter (vm, udp6_input_node.index, evt, val);
}

#define udp_store_err_counters(vm, is_ip4, cnts)			\
{									\
  int i;								\
  for (i = 0; i < UDP_N_ERROR; i++)					\
    if (cnts[i])							\
      udp_input_inc_counter(vm, is_ip4, i, cnts[i]);			\
}

#define udp_inc_err_counter(cnts, err, val)				\
{									\
  cnts[err] += val;							\
}

static void
udp_trace_buffer (vlib_main_t * vm, vlib_node_runtime_t * node,
		  vlib_buffer_t * b, session_t * s, u16 error0)
{
  udp_input_trace_t *t;

  if (PREDICT_TRUE (!(b->flags & VLIB_BUFFER_IS_TRACED)))
    return;

  t = vlib_add_trace (vm, node, b, sizeof (*t));
  t->connection = s ? s->connection_index : ~0;
  t->disposition = error0;
  t->thread_index = s ? s->thread_index : vm->thread_index;
}

static udp_connection_t *
udp_connection_accept (udp_connection_t * listener, session_dgram_hdr_t * hdr,
		       u32 thread_index)
{
  udp_connection_t *uc;

  uc = udp_connection_alloc (thread_index);
  ip_copy (&uc->c_lcl_ip, &hdr->lcl_ip, hdr->is_ip4);
  ip_copy (&uc->c_rmt_ip, &hdr->rmt_ip, hdr->is_ip4);
  uc->c_lcl_port = hdr->lcl_port;
  uc->c_rmt_port = hdr->rmt_port;
  uc->c_is_ip4 = hdr->is_ip4;
  uc->c_fib_index = listener->c_fib_index;
  uc->mss = listener->mss;
  uc->flags |= UDP_CONN_F_CONNECTED;

  if (session_dgram_accept (&uc->connection, listener->c_s_index,
			    listener->c_thread_index))
    {
      udp_connection_free (uc);
      return 0;
    }
  udp_connection_share_port (clib_net_to_host_u16
			     (uc->c_lcl_port), uc->c_is_ip4);
  return uc;
}

static void
udp_connection_enqueue (udp_connection_t * uc0, session_t * s0,
			session_dgram_hdr_t * hdr0, u32 thread_index,
			vlib_buffer_t * b, u8 queue_event, u32 * error0)
{
  int wrote0;

  clib_spinlock_lock (&uc0->rx_lock);

  if (svm_fifo_max_enqueue_prod (s0->rx_fifo)
      < hdr0->data_length + sizeof (session_dgram_hdr_t))
    {
      *error0 = UDP_ERROR_FIFO_FULL;
      goto unlock_rx_lock;
    }

  /* If session is owned by another thread and rx event needed,
   * enqueue event now while we still have the peeker lock */
  if (s0->thread_index != thread_index)
    {
      wrote0 = session_enqueue_dgram_connection (s0, hdr0, b,
						 TRANSPORT_PROTO_UDP,
						 /* queue event */ 0);
      if (queue_event && !svm_fifo_has_event (s0->rx_fifo))
	session_enqueue_notify (s0);
    }
  else
    {
      wrote0 = session_enqueue_dgram_connection (s0, hdr0, b,
						 TRANSPORT_PROTO_UDP,
						 queue_event);
    }
  ASSERT (wrote0 > 0);

unlock_rx_lock:

  clib_spinlock_unlock (&uc0->rx_lock);
}

always_inline session_t *
udp_parse_and_lookup_buffer (vlib_buffer_t * b, session_dgram_hdr_t * hdr,
			     u8 is_ip4)
{
  udp_header_t *udp;
  u32 fib_index;
  session_t *s;

  /* udp_local hands us a pointer to the udp data */
  udp = (udp_header_t *) (vlib_buffer_get_current (b) - sizeof (*udp));
  fib_index = vnet_buffer (b)->ip.fib_index;

  hdr->data_offset = 0;
  hdr->lcl_port = udp->dst_port;
  hdr->rmt_port = udp->src_port;
  hdr->is_ip4 = is_ip4;

  if (is_ip4)
    {
      ip4_header_t *ip4;

      /* TODO: must fix once udp_local does ip options correctly */
      ip4 = (ip4_header_t *) (((u8 *) udp) - sizeof (*ip4));
      ip_set (&hdr->lcl_ip, &ip4->dst_address, 1);
      ip_set (&hdr->rmt_ip, &ip4->src_address, 1);
      hdr->data_length = clib_net_to_host_u16 (ip4->length);
      hdr->data_length -= sizeof (ip4_header_t) + sizeof (udp_header_t);
      s = session_lookup_safe4 (fib_index, &ip4->dst_address,
				&ip4->src_address, udp->dst_port,
				udp->src_port, TRANSPORT_PROTO_UDP);
    }
  else
    {
      ip6_header_t *ip60;

      ip60 = (ip6_header_t *) (((u8 *) udp) - sizeof (*ip60));
      ip_set (&hdr->lcl_ip, &ip60->dst_address, 0);
      ip_set (&hdr->rmt_ip, &ip60->src_address, 0);
      hdr->data_length = clib_net_to_host_u16 (ip60->payload_length);
      hdr->data_length -= sizeof (
/*
 * Copyright (c) 2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <vnet/adj/adj_nbr.h>
#include <vnet/adj/adj_internal.h>
#include <vnet/ethernet/arp_packet.h>
#include <vnet/fib/fib_walk.h>

/*
 * Vector Hash tables of neighbour (traditional) adjacencies
 *  Key: interface(for the vector index), address (and its proto),
 *       link-type/ether-type.
 */
static uword **adj_nbr_tables[FIB_PROTOCOL_IP_MAX];

typedef struct adj_nbr_key_t_
{
    ip46_address_t ank_ip;
    u64 ank_linkt;
} adj_nbr_key_t;

#define ADJ_NBR_SET_KEY(_key, _lt, _nh)         \
{						\
    ip46_address_copy(&(_key).ank_ip, (_nh));   \
    _key.ank_linkt = (_lt);			\
}

#define ADJ_NBR_ITF_OK(_proto, _itf)			\
    (((_itf) < vec_len(adj_nbr_tables[_proto])) &&	\
     (NULL != adj_nbr_tables[_proto][(_itf)]))

#define ADJ_NBR_ASSERT_NH_PROTO(nh_proto, err)          \
  do {                                                  \
      ASSERT (nh_proto < FIB_PROTOCOL_IP_MAX);          \
      const fib_protocol_t nh_proto__ = (nh_proto);     \
      if (nh_proto__ >= FIB_PROTOCOL_IP_MAX)            \
        {                                               \
          clib_warning ("BUG: protocol %d > %d\n",      \
                        (int)nh_proto__,                \
                        FIB_PROTOCOL_IP_MAX);           \
          return err;                                   \
        }                                               \
  } while (0)

static void
adj_nbr_insert (fib_protocol_t nh_proto,
		vnet_link_t link_type,
		const ip46_address_t *nh_addr,
		u32 sw_if_index,
		adj_index_t adj_index)
{
    adj_nbr_key_t kv;

    ADJ_NBR_ASSERT_NH_PROTO (nh_proto,);

    if (sw_if_index >= vec_len(adj_nbr_tables[nh_proto]))
    {
	vec_validate(adj_nbr_tables[nh_proto], sw_if_index);
    }
    if (NULL == adj_nbr_tables[nh_proto][sw_if_index])
    {
	adj_nbr_tables[nh_proto][sw_if_index] =
	    hash_create_mem(0, sizeof(adj_nbr_key_t), sizeof(adj_index_t));
    }

    ADJ_NBR_SET_KEY(kv, link_type, nh_addr);

    hash_set_mem_alloc (&adj_nbr_tables[nh_proto][sw_if_index],
                        &kv, adj_index);
}

void
adj_nbr_remove (adj_index_t ai,
                fib_protocol_t nh_proto,
		vnet_link_t link_type,
		const ip46_address_t *nh_addr,
		u32 sw_if_index)
{
    adj_nbr_key_t kv;

    ADJ_NBR_ASSERT_NH_PROTO (nh_proto,);

    if (!ADJ_NBR_ITF_OK(nh_proto, sw_if_index))
	return;

    ADJ_NBR_SET_KEY(kv, link_type, nh_addr);

    hash_unset_mem_free(&adj_nbr_tables[nh_proto][sw_if_index], &kv);

    if (0 == hash_elts(adj_nbr_tables[nh_proto][sw_if_index]))
    {
        hash_free(adj_nbr_tables[nh_proto][sw_if_index]);
    }
}

adj_index_t
adj_nbr_find (fib_protocol_t nh_proto,
	      vnet_link_t link_type,
	      const ip46_address_t *nh_addr,
	      u32 sw_if_index)
{
    adj_nbr_key_t kv;
    uword *p;

    ADJ_NBR_ASSERT_NH_PROTO (nh_proto, ADJ_INDEX_INVALID);

    ADJ_NBR_SET_KEY(kv, link_type, nh_addr);

    if (!ADJ_NBR_ITF_OK(nh_proto, sw_if_index))
	return (ADJ_INDEX_INVALID);

    p = hash_get_mem(adj_nbr_tables[nh_proto][sw_if_index], &kv);

    if (p)
    {
	return (p[0]);
    }
    return (ADJ_INDEX_INVALID);
}

static inline u32
adj_get_nd_node (fib_protocol_t proto)
{
    switch (proto) {
    case FIB_PROTOCOL_IP4:
	return (ip4_arp_node.index);
    case FIB_PROTOCOL_IP6:
	return (ip6_discover_neighbor_node.index);
    case FIB_PROTOCOL_MPLS:
	break;
    }
    ASSERT(0);
    return (ip4_arp_node.index);
}

/**
 * @brief Check and set feature flags if o/p interface has any o/p features.
 */
static void
adj_nbr_evaluate_feature (adj_index_t ai)
{
    ip_adjacency_t *adj;
    vnet_feature_main_t *fm = &feature_main;
    i16 feature_count;
    u8 arc_index;
    u32 sw_if_index;

    adj = adj_get(ai);

    switch (adj->ia_link)
    {
    case VNET_LINK_IP4:
        arc_index = ip4_main.lookup_main.output_feature_arc_index;
        break;
    case VNET_LINK_IP6:
        arc_index = ip6_main.lookup_main.output_feature_arc_index;
        break;
    case VNET_LINK_MPLS:
        arc_index = mpls_main.output_feature_arc_index;
        break;
    default:
        return;
    }

    sw_if_index = adj->rewrite_header.sw_if_index;
    if (vec_len(fm->feature_count_by_sw_if_index[arc_index]) > sw_if_index)
    {
        feature_count = fm->feature_count_by_sw_if_index[arc_index][sw_if_index];
        if (feature_count > 0)
        {
            vnet_feature_config_main_t *cm;

            adj->rewrite_header.flags |= VNET_REWRITE_HAS_FEATURES;
            cm = &fm->feature_config_mains[arc_index];

            adj->ia_cfg_index = vec_elt (cm->config_index_by_sw_if_index,
                                         sw_if_index);
        }
    }
    return;
}

static ip_adjacency_t*
adj_nbr_alloc (fib_protocol_t nh_proto,
	       vnet_link_t link_type,
	       const ip46_address_t *nh_addr,
	       u32 sw_if_index)
{
    ip_adjacency_t *adj;

    adj = adj_alloc(nh_proto);

    adj_nbr_insert(nh_proto, link_type, nh_addr,
		   sw_if_index,
		   adj_get_index(adj));

    /*
     * since we just added the ADJ we have no rewrite string for it,
     * so its for ARP
     */
    adj->lookup_next_index = IP_LOOKUP_NEXT_ARP;
    adj->sub_type.nbr.next_hop = *nh_addr;
    adj->ia_link = link_type;
    adj->ia_nh_proto = nh_proto;
    adj->rewrite_header.sw_if_index = sw_if_index;
    vnet_rewrite_update_mtu(vnet_get_main(), adj->ia_link,
                            &adj->rewrite_header);

    adj_nbr_evaluate_feature (adj_get_index(adj));
    return (adj);
}

void
adj_nbr_set_mtu (adj_index_t adj_index, u16 mtu)
{
    ip_adjacency_t *adj;

    ASSERT(ADJ_INDEX_INVALID != adj_index);

    adj = adj_get(adj_index);

    if (0
class="n">adj->rewrite_header); adj->rewrite_header.max_l3_packet_bytes = clib_min (adj->rewrite_header.max_l3_packet_bytes, mtu); } } /* * adj_nbr_add_or_lock * * Add an adjacency for the neighbour requested. * * The key for an adj is: * - the Next-hops protocol (i.e. v4 or v6) * - the address of the next-hop * - the interface the next-hop is reachable through */ adj_index_t adj_nbr_add_or_lock (fib_protocol_t nh_proto, vnet_link_t link_type, const ip46_address_t *nh_addr, u32 sw_if_index) { adj_index_t adj_index; adj_index = adj_nbr_find(nh_proto, link_type, nh_addr, sw_if_index); if (ADJ_INDEX_INVALID == adj_index) { ip_adjacency_t *adj; vnet_main_t *vnm; vnm = vnet_get_main(); adj = adj_nbr_alloc(nh_proto, link_type, nh_addr, sw_if_index); adj_index = adj_get_index(adj); adj_lock(adj_index); if (ip46_address_is_equal(&ADJ_BCAST_ADDR, nh_addr)) { adj->lookup_next_index = IP_LOOKUP_NEXT_BCAST; } vnet_rewrite_init(vnm, sw_if_index, link_type, adj_get_nd_node(nh_proto), vnet_tx_node_index_for_sw_interface(vnm, sw_if_index), &adj->rewrite_header); /* * we need a rewrite where the destination IP address is converted * to the appropriate link-layer address. This is interface specific. * So ask the interface to do it. */ vnet_update_adjacency_for_sw_interface(vnm, sw_if_index, adj_index); adj_delegate_adj_created(adj_get(adj_index)); } else { adj_lock(adj_index); } return (adj_index); } adj_index_t adj_nbr_add_or_lock_w_rewrite (fib_protocol_t nh_proto, vnet_link_t link_type, const ip46_address_t *nh_addr, u32 sw_if_index, u8 *rewrite) { adj_index_t adj_index; adj_index = adj_nbr_find(nh_proto, link_type, nh_addr, sw_if_index); if (ADJ_INDEX_INVALID == adj_index) { ip_adjacency_t *adj; adj = adj_nbr_alloc(nh_proto, link_type, nh_addr, sw_if_index); adj->rewrite_header.sw_if_index = sw_if_index; adj_index = adj_get_index(adj); } adj_lock(adj_index); adj_nbr_update_rewrite(adj_index, ADJ_NBR_REWRITE_FLAG_COMPLETE, rewrite); adj_delegate_adj_created(adj_get(adj_index)); return (adj_index); } /** * adj_nbr_update_rewrite * * Update the adjacency's rewrite string. A NULL string implies the * rewrite is reset (i.e. when ARP/ND entry is gone). * NB: the adj being updated may be handling traffic in the DP. */ void adj_nbr_update_rewrite (adj_index_t adj_index, adj_nbr_rewrite_flag_t flags, u8 *rewrite) { ip_adjacency_t *adj; ASSERT(ADJ_INDEX_INVALID != adj_index); adj = adj_get(adj_index); if (flags & ADJ_NBR_REWRITE_FLAG_COMPLETE) { /* * update the adj's rewrite string and build the arc * from the rewrite node to the interface's TX node */ adj_nbr_update_rewrite_internal(adj, IP_LOOKUP_NEXT_REWRITE, adj_get_rewrite_node(adj->ia_link), vnet_tx_node_index_for_sw_interface( vnet_get_main(), adj->rewrite_header.sw_if_index), rewrite); } else { adj_nbr_update_rewrite_internal(adj, IP_LOOKUP_NEXT_ARP, adj_get_nd_node(adj->ia_nh_proto), vnet_tx_node_index_for_sw_interface( vnet_get_main(), adj->rewrite_header.sw_if_index), rewrite); } } /** * adj_nbr_update_rewrite_internal * * Update the adjacency's rewrite string. A NULL string implies the * rewrite is reset (i.e. when ARP/ND entry is gone). * NB: the adj being updated may be handling traffic in the DP. */ void adj_nbr_update_rewrite_internal (ip_adjacency_t *adj, ip_lookup_next_t adj_next_index, u32 this_node, u32 next_node, u8 *rewrite) { ip_adjacency_t *walk_adj; adj_index_t walk_ai, ai; vlib_main_t * vm; u32 old_next; int do_walk; vm = vlib_get_main(); old_next = adj->lookup_next_index; ai = walk_ai = adj_get_index(adj); if (VNET_LINK_MPLS == adj->ia_link) { /* * The link type MPLS has no children in the control plane graph, it only * has children in the data-plane graph. The backwalk is up the former. * So we need to walk from its IP cousin. */ walk_ai = adj_nbr_find(adj->ia_nh_proto, fib_proto_to_link(adj->ia_nh_proto), &adj->sub_type.nbr.next_hop, adj->rewrite_header.sw_if_index); } /* * Don't call the walk re-entrantly */ if (ADJ_INDEX_INVALID != walk_ai) { walk_adj = adj_get(walk_ai); if (ADJ_FLAG_SYNC_WALK_ACTIVE & walk_adj->ia_flags) { do_walk = 0; } else { /* * Prevent re-entrant walk of the same adj */ walk_adj->ia_flags |= ADJ_FLAG_SYNC_WALK_ACTIVE; do_walk = 1; } } else { do_walk = 0; } /* * lock the adjacencies that are affected by updates this walk will provoke. * Since the aim of the walk is to update children to link to a different * DPO, this adj will no longer be in use and its lock count will drop to 0. * We don't want it to be deleted as part of this endeavour. */ adj_lock(ai); adj_lock(walk_ai); /* * Updating a rewrite string is not atomic; * - the rewrite string is too long to write in one instruction * - when swapping from incomplete to complete, we also need to update * the VLIB graph next-index of the adj. * ideally we would only want to suspend forwarding via this adj whilst we * do this, but we do not have that level of granularity - it's suspend all * worker threads or nothing. * The other choices are: * - to mark the adj down and back walk so child load-balances drop this adj * from the set. * - update the next_node index of this adj to point to error-drop * both of which will mean for MAC change we will drop for this adj * which is not acceptable. However, when the adj changes type (from * complete to incomplete and vice-versa) the child DPOs, which have the * VLIB graph next node index, will be sending packets to the wrong graph * node. So from the options above, updating the next_node of the adj to * be drop will work, but it relies on each graph node v4/v6/mpls, rewrite/ * arp/midchain always be valid w.r.t. a mis-match of adj type and node type * (i.e. a rewrite adj in the arp node). This is not enforceable. Getting it * wrong will lead to hard to find bugs since its a race condition. So we * choose the more reliable method of updating the children to use the drop, * then switching adj's type, then updating the children again. Did I mention * that this doesn't happen often... * So we need to distinguish between the two cases: * 1 - mac change * 2 - adj type change */ if (do_walk && old_next != adj_next_index && ADJ_INDEX_INVALID != walk_ai) { /* * the adj is changing type. we need to fix all children so that they * stack momentarily on a drop, while the adj changes. If we don't do * this the children will send packets to a VLIB graph node that does * not correspond to the adj's type - and it goes downhill from there. */ fib_node_back_walk_ctx_t bw_ctx = { .fnbw_reason = FIB_NODE_BW_REASON_FLAG_ADJ_DOWN, /* * force this walk to be synchronous. if we don't and a node in the graph * (a heavily shared path-list) chooses to back-ground the walk (make it * async) then it will pause and we will do the adj update below, before * all the children are updated. not good. */ .fnbw_flags = FIB_NODE_BW_FLAG_FORCE_SYNC, }; fib_walk_sync(FIB_NODE_TYPE_ADJ, walk_ai, &bw_ctx); /* * fib_walk_sync may allocate a new adjacency and potentially cuase a * realloc for adj_pool. When that happens, adj pointer is no longer * valid here. We refresh the adj pointer accordingly. */ adj = adj_get (ai); } /* * If we are just updating the MAC string of the adj (which we also can't * do atomically), then we need to stop packets switching through the adj. * We can't do that on a per-adj basis, so it's all the packets. * If we are updating the type, and we walked back to the children above, * then this barrier serves to flush the queues/frames. */ vlib_worker_thread_barrier_sync(vm); adj->lookup_next_index = adj_next_index; adj->ia_node_index = this_node; if (NULL != rewrite) { /* * new rewrite provided. * fill in the adj's rewrite string, and build the VLIB graph arc. */ vnet_rewrite_set_data_internal(&adj->rewrite_header, sizeof(adj->rewrite_data), rewrite, vec_len(rewrite)); vec_free(rewrite); } else { vnet_rewrite_clear_data_internal(&adj->rewrite_header, sizeof(adj->rewrite_data)); } adj->rewrite_header.next_index = vlib_node_add_next(vlib_get_main(), this_node, next_node); /* * done with the rewrite update - let the workers loose. */ vlib_worker_thread_barrier_release(vm); if (do_walk && (old_next != adj->lookup_next_index) && (ADJ_INDEX_INVALID != walk_ai)) { /* * backwalk to the children so they can stack on the now updated * adjacency */ fib_node_back_walk_ctx_t bw_ctx = { .fnbw_reason = FIB_NODE_BW_REASON_FLAG_ADJ_UPDATE, }; fib_walk_sync(FIB_NODE_TYPE_ADJ, walk_ai, &bw_ctx); } /* * Prevent re-entrant walk of the same adj */ if (do_walk) { walk_adj = adj_get(walk_ai); walk_adj->ia_flags &= ~ADJ_FLAG_SYNC_WALK_ACTIVE; } adj_delegate_adj_modified(adj); adj_unlock(ai); adj_unlock(walk_ai); } u32 adj_nbr_db_size (void) { fib_protocol_t proto; u32 sw_if_index = 0; u64 count = 0; for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) { vec_foreach_index(sw_if_index, adj_nbr_tables[proto]) { if (NULL != adj_nbr_tables[proto][sw_if_index]) { count += hash_elts(adj_nbr_tables[proto][sw_if_index]); } } } return (count); } /** * @brief Walk all adjacencies on a link for a given next-hop protocol */ void adj_nbr_walk (u32 sw_if_index, fib_protocol_t adj_nh_proto, adj_walk_cb_t cb, void *ctx) { adj_index_t ai, *ais, *aip; adj_nbr_key_t *key; ADJ_NBR_ASSERT_NH_PROTO (adj_nh_proto,); if (!ADJ_NBR_ITF_OK(adj_nh_proto, sw_if_index)) return; ais = NULL; /* elements may be removed from the table during the walk, so * collect the set first then process them */ hash_foreach_mem (key, ai, adj_nbr_tables[adj_nh_proto][sw_if_index], ({ vec_add1(ais, ai); })); vec_foreach(aip, ais) { /* An adj may be deleted during the walk so check first */ if (!pool_is_free_index(adj_pool, *aip)) cb(*aip, ctx); } vec_free(ais); } /** * @brief Walk adjacencies on a link with a given v4 next-hop. * that is visit the adjacencies with different link types. */ void adj_nbr_walk_nh4 (u32 sw_if_index, const ip4_address_t *addr, adj_walk_cb_t cb, void *ctx) { if (!ADJ_NBR_ITF_OK(FIB_PROTOCOL_IP4, sw_if_index)) return; ip46_address_t nh = { .ip4 = *addr, }; vnet_link_t linkt; adj_index_t ai; FOR_EACH_VNET_LINK(linkt) { ai = adj_nbr_find (FIB_PROTOCOL_IP4, linkt, &nh, sw_if_index); if (INDEX_INVALID != ai) cb(ai, ctx); } } /** * @brief Walk adjacencies on a link with a given v6 next-hop. * that is visit the adjacencies with different link types. */ void adj_nbr_walk_nh6 (u32 sw_if_index, const ip6_address_t *addr, adj_walk_cb_t cb, void *ctx) { if (!ADJ_NBR_ITF_OK(FIB_PROTOCOL_IP6, sw_if_index)) return; ip46_address_t nh = { .ip6 = *addr, }; vnet_link_t linkt; adj_index_t ai; FOR_EACH_VNET_LINK(linkt) { ai = adj_nbr_find (FIB_PROTOCOL_IP6, linkt, &nh, sw_if_index); if (INDEX_INVALID != ai) cb(ai, ctx); } } /** * @brief Walk adjacencies on a link with a given next-hop. * that is visit the adjacencies with different link types. */ void adj_nbr_walk_nh (u32 sw_if_index, fib_protocol_t adj_nh_proto, const ip46_address_t *nh, adj_walk_cb_t cb, void *ctx) { ADJ_NBR_ASSERT_NH_PROTO (adj_nh_proto,); if (!ADJ_NBR_ITF_OK(adj_nh_proto, sw_if_index)) return; switch (adj_nh_proto) { case FIB_PROTOCOL_IP4: adj_nbr_walk_nh4(sw_if_index, &nh->ip4, cb, ctx); break; case FIB_PROTOCOL_IP6: adj_nbr_walk_nh6(sw_if_index, &nh->ip6, cb, ctx); break; case FIB_PROTOCOL_MPLS: ASSERT(0); break; } } /** * Flags associated with the interface state walks */ typedef enum adj_nbr_interface_flags_t_ { ADJ_NBR_INTERFACE_UP = (1 << 0), } adj_nbr_interface_flags_t; /** * Context for the state change walk of the DB */ typedef struct adj_nbr_interface_state_change_ctx_t_ { /** * Flags on the interface */ adj_nbr_interface_flags_t flags; } adj_nbr_interface_state_change_ctx_t; static adj_walk_rc_t adj_nbr_interface_state_change_one (adj_index_t ai, void *arg) { /* * Back walk the graph to inform the forwarding entries * that this interface state has changed. Do this synchronously * since this is the walk that provides convergence */ adj_nbr_interface_state_change_ctx_t *ctx = arg; fib_node_back_walk_ctx_t bw_ctx = { .fnbw_reason = ((ctx->flags & ADJ_NBR_INTERFACE_UP) ? FIB_NODE_BW_REASON_FLAG_INTERFACE_UP : FIB_NODE_BW_REASON_FLAG_INTERFACE_DOWN), /* * the force sync applies only as far as the first fib_entry. * And it's the fib_entry's we need to converge away from * the adjacencies on the now down link */ .fnbw_flags = (!(ctx->flags & ADJ_NBR_INTERFACE_UP) ? FIB_NODE_BW_FLAG_FORCE_SYNC : FIB_NODE_BW_FLAG_NONE), }; ip_adjacency_t *adj; adj = adj_get(ai); adj->ia_flags |= ADJ_FLAG_SYNC_WALK_ACTIVE; fib_walk_sync(FIB_NODE_TYPE_ADJ, ai, &bw_ctx); adj->ia_flags &= ~ADJ_FLAG_SYNC_WALK_ACTIVE; return (ADJ_WALK_RC_CONTINUE); } /** * @brief Registered function for SW interface state changes */ static clib_error_t * adj_nbr_sw_interface_state_change (vnet_main_t * vnm, u32 sw_if_index, u32 flags) { fib_protocol_t proto; /* * walk each adj on the interface and trigger a walk from that adj */ for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) { adj_nbr_interface_state_change_ctx_t ctx = { .flags = ((flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) ? ADJ_NBR_INTERFACE_UP : 0), }; adj_nbr_walk(sw_if_index, proto, adj_nbr_interface_state_change_one, &ctx); } return (NULL); } VNET_SW_INTERFACE_ADMIN_UP_DOWN_FUNCTION_PRIO( adj_nbr_sw_interface_state_change, VNET_ITF_FUNC_PRIORITY_HIGH); /** * @brief Invoked on each SW interface of a HW interface when the * HW interface state changes */ static walk_rc_t adj_nbr_hw_sw_interface_state_change (vnet_main_t * vnm, u32 sw_if_index, void *arg) { adj_nbr_interface_state_change_ctx_t *ctx = arg; fib_protocol_t proto; /* * walk each adj on the interface and trigger a walk from that adj */ for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) { adj_nbr_walk(sw_if_index, proto, adj_nbr_interface_state_change_one, ctx); } return (WALK_CONTINUE); } /** * @brief Registered callback for HW interface state changes */ static clib_error_t * adj_nbr_hw_interface_state_change (vnet_main_t * vnm, u32 hw_if_index, u32 flags) { /* * walk SW interface on the HW */ adj_nbr_interface_state_change_ctx_t ctx = { .flags = ((flags & VNET_HW_INTERFACE_FLAG_LINK_UP) ? ADJ_NBR_INTERFACE_UP : 0), }; vnet_hw_interface_walk_sw(vnm, hw_if_index, adj_nbr_hw_sw_interface_state_change, &ctx); return (NULL); } VNET_HW_INTERFACE_LINK_UP_DOWN_FUNCTION_PRIO( adj_nbr_hw_interface_state_change, VNET_ITF_FUNC_PRIORITY_HIGH); static adj_walk_rc_t adj_nbr_interface_delete_one (adj_index_t ai, void *arg) { /* * Back walk the graph to inform the forwarding entries * that this interface has been deleted. */ fib_node_back_walk_ctx_t bw_ctx = { .fnbw_reason = FIB_NODE_BW_REASON_FLAG_INTERFACE_DELETE, }; ip_adjacency_t *adj; adj_lock(ai); adj = adj_get(ai); adj->ia_flags |= ADJ_FLAG_SYNC_WALK_ACTIVE; fib_walk_sync(FIB_NODE_TYPE_ADJ, ai, &bw_ctx); adj->ia_flags &= ~ADJ_FLAG_SYNC_WALK_ACTIVE; adj_unlock(ai); return (ADJ_WALK_RC_CONTINUE); } /** * adj_nbr_interface_add_del * * Registered to receive interface Add and delete notifications */ static clib_error_t * adj_nbr_interface_add_del (vnet_main_t * vnm, u32 sw_if_index, u32 is_add) { fib_protocol_t proto; if (is_add) { /* * not interested in interface additions. we will not back walk * to resolve paths through newly added interfaces. Why? The control * plane should have the brains to add interfaces first, then routes. * So the case where there are paths with a interface that matches * one just created is the case where the path resolved through an * interface that was deleted, and still has not been removed. The * new interface added, is NO GUARANTEE that the interface being * added now, even though it may have the same sw_if_index, is the * same interface that the path needs. So tough! * If the control plane wants these routes to resolve it needs to * remove and add them again. */ return (NULL); } for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) { adj_nbr_walk(sw_if_index, proto, adj_nbr_interface_delete_one, NULL); } return (NULL); } VNET_SW_INTERFACE_ADD_DEL_FUNCTION(adj_nbr_interface_add_del); static adj_walk_rc_t adj_nbr_show_one (adj_index_t ai, void *arg) { vlib_cli_output (arg, "[@%d] %U", ai, format_ip_adjacency, ai, FORMAT_IP_ADJACENCY_NONE); return (ADJ_WALK_RC_CONTINUE); } static clib_error_t * adj_nbr_show (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { adj_index_t ai = ADJ_INDEX_INVALID; ip46_address_t nh = ip46_address_initializer; u32 sw_if_index = ~0; while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) { if (unformat (input, "%U", unformat_vnet_sw_interface, vnet_get_main(), &sw_if_index)) ; else if (unformat (input, "%U", unformat_ip46_address, &nh, IP46_TYPE_ANY)) ; else if (unformat (input, "%d", &ai)) ; else break; } if (ADJ_INDEX_INVALID != ai) { vlib_cli_output (vm, "[@%d] %U", ai, format_ip_adjacency, ai, FORMAT_IP_ADJACENCY_DETAIL); } else if (~0 != sw_if_index) { fib_protocol_t proto; if (ip46_address_is_zero(&nh)) { for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) { adj_nbr_walk(sw_if_index, proto, adj_nbr_show_one, vm); } } else { proto = (ip46_address_is_ip4(&nh) ? FIB_PROTOCOL_IP4 : FIB_PROTOCOL_IP6); adj_nbr_walk_nh(sw_if_index, proto, &nh, adj_nbr_show_one, vm); } } else { fib_protocol_t proto; for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) { vec_foreach_index(sw_if_index, adj_nbr_tables[proto]) { adj_nbr_walk(sw_if_index, proto, adj_nbr_show_one, vm); } } } return 0; } /*? * Show all neighbour adjacencies. * @cliexpar * @cliexstart{sh adj nbr} * [@2] ipv4 via 1.0.0.2 loop0: IP4: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc * [@3] mpls via 1.0.0.2 loop0: MPLS_UNICAST: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc * [@4] ipv4 via 1.0.0.3 loop0: IP4: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc * [@5] mpls via 1.0.0.3 loop0: MPLS_UNICAST: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc * @cliexend ?*/ VLIB_CLI_COMMAND (ip4_show_fib_command, static) = { .path = "show adj nbr", .short_help = "show adj nbr [<adj_index>] [interface]", .function = adj_nbr_show, }; u8* format_adj_nbr_incomplete (u8* s, va_list *ap) { index_t index = va_arg(*ap, index_t); CLIB_UNUSED(u32 indent) = va_arg(*ap, u32); vnet_main_t * vnm = vnet_get_main(); ip_adjacency_t * adj = adj_get(index); s = format (s, "arp-%U", format_vnet_link, adj->ia_link); s = format (s, ": via %U", format_ip46_address, &adj->sub_type.nbr.next_hop, adj_proto_to_46(adj->ia_nh_proto)); s = format (s, " %U", format_vnet_sw_if_index_name, vnm, adj->rewrite_header.sw_if_index); return (s); } u8* format_adj_nbr (u8* s, va_list *ap) { index_t index = va_arg(*ap, index_t); CLIB_UNUSED(u32 indent) = va_arg(*ap, u32); ip_adjacency_t * adj = adj_get(index); s = format (s, "%U", format_vnet_link, adj->ia_link); s = format (s, " via %U ", format_ip46_address, &adj->sub_type.nbr.next_hop, adj_proto_to_46(adj->ia_nh_proto)); s = format (s, "%U", format_vnet_rewrite, &adj->rewrite_header, sizeof (adj->rewrite_data), 0); return (s); } static void adj_dpo_lock (dpo_id_t *dpo) { adj_lock(dpo->dpoi_index); } static void adj_dpo_unlock (dpo_id_t *dpo) { adj_unlock(dpo->dpoi_index); } static void adj_mem_show (void) { fib_show_memory_usage("Adjacency", pool_elts(adj_pool), pool_len(adj_pool), sizeof(ip_adjacency_t)); } const static dpo_vft_t adj_nbr_dpo_vft = { .dv_lock = adj_dpo_lock, .dv_unlock = adj_dpo_unlock, .dv_format = format_adj_nbr, .dv_mem_show = adj_mem_show, .dv_get_urpf = adj_dpo_get_urpf, .dv_get_mtu = adj_dpo_get_mtu, }; const static dpo_vft_t adj_nbr_incompl_dpo_vft = { .dv_lock = adj_dpo_lock, .dv_unlock = adj_dpo_unlock, .dv_format = format_adj_nbr_incomplete, .dv_get_urpf = adj_dpo_get_urpf, .dv_get_mtu = adj_dpo_get_mtu, }; /** * @brief The per-protocol VLIB graph nodes that are assigned to an adjacency * object. * * this means that these graph nodes are ones from which a nbr is the * parent object in the DPO-graph. */ const static char* const nbr_ip4_nodes[] = { "ip4-rewrite", NULL, }; const static char* const nbr_ip6_nodes[] = { "ip6-rewrite", NULL, }; const static char* const nbr_mpls_nodes[] = { "mpls-output", NULL, }; const static char* const nbr_ethernet_nodes[] = { "adj-l2-rewrite", NULL, }; const static char* const * const nbr_nodes[DPO_PROTO_NUM] = { [DPO_PROTO_IP4] = nbr_ip4_nodes, [DPO_PROTO_IP6] = nbr_ip6_nodes, [DPO_PROTO_MPLS] = nbr_mpls_nodes, [DPO_PROTO_ETHERNET] = nbr_ethernet_nodes, }; const static char* const nbr_incomplete_ip4_nodes[] = { "ip4-arp", NULL, }; const static char* const nbr_incomplete_ip6_nodes[] = { "ip6-discover-neighbor", NULL, }; const static char* const nbr_incomplete_mpls_nodes[] = { "mpls-adj-incomplete", NULL, }; const static char* const * const nbr_incomplete_nodes[DPO_PROTO_NUM] = { [DPO_PROTO_IP4] = nbr_incomplete_ip4_nodes, [DPO_PROTO_IP6] = nbr_incomplete_ip6_nodes, [DPO_PROTO_MPLS] = nbr_incomplete_mpls_nodes, }; void adj_nbr_module_init (void) { dpo_register(DPO_ADJACENCY, &adj_nbr_dpo_vft, nbr_nodes); dpo_register(DPO_ADJACENCY_INCOMPLETE, &adj_nbr_incompl_dpo_vft, nbr_incomplete_nodes); }