summaryrefslogtreecommitdiffstats
path: root/src/vppinfra/llist.h
blob: 25fb95ff66e9701e74cfd088f1943cd52fb2cd3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*
 * Copyright (c) 2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * @file
 * @brief Circular doubly linked list with head sentinel.
 * List entries are allocated out of a "supporting" pool and all pool entries
 * must contain a list anchor struct for each list they pertain to.
 */

#ifndef SRC_VPPINFRA_CLIB_LLIST_H_
#define SRC_VPPINFRA_CLIB_LLIST_H_

#include <vppinfra/types.h>
#include <vppinfra/pool.h>

typedef u32 clib_llist_index_t;

typedef struct clib_llist_anchor
{
  clib_llist_index_t prev;
  clib_llist_index_t next;
} clib_llist_anchor_t;

#define CLIB_LLIST_INVALID_INDEX ((u32)~0)

/**
 * Local variable naming macro.
 */
#define _ll_var(v) _llist_##v
/**
 * Local macros to grab llist anchor next and prev from pool entry
 */
#define _lnext(E,name) ((E)->name).next
#define _lprev(E,name) ((E)->name).prev
/**
 * Get list entry index
 *
 * @param LP	linked list pool
 * @param E	pool entry
 * @return	pool entry index
 */
#define clib_llist_entry_index(LP,E) ((E) - (LP))
/**
 * Get prev list entry index
 *
 * @param E	pool entry
 * @name	list anchor name
 * @return	previous index
 */
#define clib_llist_prev_index(E,name) _lprev(E,name)
/**
 * Get next list entry index
 *
 * @param E	pool entry
 * @name	list anchor name
 * @return	next index
 */
#define clib_llist_next_index(E,name) _lnext(E,name)
/**
 * Get next pool entry
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	pool entry
 * @return	next pool entry
 */
#define clib_llist_next(LP,name,E) pool_elt_at_index((LP),_lnext((E),name))
/**
 * Get previous pool entry
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	pool entry
 * @return	previous pool entry
 */
#define clib_llist_prev(LP,name,E) pool_elt_at_index((LP),_lprev((E),name))
/**
 * Initialize element in llist for entry
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	entry whose ll anchor is to be initialized
 */
#define clib_llist_anchor_init(LP,name,E)				\
do {									\
  _lprev ((E),name) = clib_llist_entry_index ((LP), (E));		\
  _lnext ((E),name) = _lprev ((E),name);				\
} while (0)
/**
 * Initialize llist head
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 */
#define clib_llist_make_head(LP,name)					\
({									\
  typeof (LP) _ll_var (head);						\
  pool_get_zero ((LP), _ll_var (head));					\
  clib_llist_anchor_init ((LP),name,_ll_var (head));			\
  clib_llist_entry_index ((LP), _ll_var (head));			\
})
/**
 * Check is list is empty
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param H	list head
 * @return	1 if sentinel is the only node part of the list, 0 otherwise
 */
#define clib_llist_is_empty(LP,name,H) 					\
  (clib_llist_entry_index (LP,H) == (H)->name.next)
/**
 * Check if element is linked in a list
 *
 * @param E	list element
 * @param name	list anchor name
 */
#define clib_llist_elt_is_linked(E,name)				\
  ((E)->name.next != CLIB_LLIST_INVALID_INDEX				\
   && (E)->name.prev != CLIB_LLIST_INVALID_INDEX)
/**
 * Insert entry between previous and next
 *
 * Internal use.
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	new entry
 * @param P	previous in list
 * @param N	next in list
 */
#define _llist_insert(LP,name,E,P,N)					\
do {									\
  _lprev (E,name) = _lprev(N,name);					\
  _lnext (E,name) = _lnext(P,name);					\
  _lprev ((N),name) = clib_llist_entry_index ((LP),(E));		\
  _lnext ((P),name) = clib_llist_entry_index ((LP),(E));		\
} while (0)
/**
 * Insert entry after previous
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	new entry
 * @param P	previous in list
 */
#define clib_llist_insert(LP,name,E,P) 					\
do {									\
  typeof (LP) _ll_var (N) = clib_llist_next (LP,name,P);		\
  _llist_insert ((LP),name,(E),(P), _ll_var (N));			\
} while (0)

/**
 * Add entry after head
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	new entry
 * @param H	list head
 */
#define clib_llist_add(LP,name,E,H) clib_llist_insert ((LP),name,(E),(H))
/**
 * Add entry after tail
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	new entry
 * @param H	list head
 */
#define clib_llist_add_tail(LP,name,E,H)				\
do {									\
  typeof (LP) _ll_var (P) = clib_llist_prev ((LP),name,(H));		\
  _llist_insert ((LP),name,(E),_ll_var (P),(H));			\
} while (0)
/**
 * Remove entry from list
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	entry to be removed
 */
#define clib_llist_remove(LP,name,E)					\
do {									\
  ASSERT ((E) != clib_llist_next (LP,name,E));/* don't remove sentinel */\
  ASSERT (_lnext (E,name) != CLIB_LLIST_INVALID_INDEX);			\
  ASSERT (_lprev (E,name) != CLIB_LLIST_INVALID_INDEX);			\
  typeof (LP) _ll_var (P) = clib_llist_prev ((LP),name,E);		\
  typeof (LP) _ll_var (N) = clib_llist_next ((LP),name,E);		\
  _lnext (_ll_var (P),name) = _lnext (E,name);				\
  _lprev (_ll_var (N),name) = _lprev (E,name);				\
  _lnext (E,name) = _lprev (E,name) = CLIB_LLIST_INVALID_INDEX;		\
}while (0)
/**
 * Removes and returns the first element in the list.
 *
 * The element is not freed. It's the responsability of the caller to
 * free it.
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param E	storage the first entry
 * @param H	list head entry
 */
#define clib_llist_pop_first(LP,name,E,H)				\
do {									\
  E = clib_llist_next (LP,name,H);					\
  clib_llist_remove (LP,name,E);					\
} while (0)
/**
 * Splice two lists at a given position
 *
 * List spliced into destination list is left with 0 entries, i.e., head
 * is made to point to itself.
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param P	position in destination where source list is spliced
 * @param H	head of source list that will be spliced into destination
 */
#define clib_llist_splice(LP,name,P,H)					\
do {									\
  typeof (LP) _ll_var (fe) = clib_llist_next (LP,name,H);		\
  if (_ll_var (fe) != (H))						\
    {									\
      typeof (LP) _ll_var (le) = clib_llist_prev (LP,name,H);		\
      typeof (LP) _ll_var (ne) = clib_llist_next (LP,name,P);		\
      _lprev (_ll_var (fe),name) = clib_llist_entry_index(LP,P);	\
      _lnext (_ll_var (le),name) = clib_llist_entry_index(LP,_ll_var (ne));\
      _lnext (P,name) = clib_llist_entry_index (LP,_ll_var (fe));	\
      _lprev (_ll_var (ne),name) = clib_llist_entry_index(LP,_ll_var (le));\
      _lnext (H,name) = clib_llist_entry_index(LP,H);			\
      _lprev (H,name) = _lnext (H,name);				\
    }									\
} while (0)
/**
 * Walk list starting at head
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param H	head entry
 * @param E	entry iterator
 * @param body	code to be executed
 */
#define clib_llist_foreach(LP,name,H,E,body)				\
do {									\
  typeof (LP) _ll_var (n);						\
  (E) = clib_llist_next (LP,name,H);					\
  while (E != H)							\
    { 									\
      _ll_var (n) = clib_llist_next (LP,name,E);			\
      do { body; } while (0);						\
      (E) = _ll_var (n);						\
    }									\
} while (0)
/**
 * Walk list starting at head safe
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param HI	head index
 * @param EI	entry index iterator
 * @param body	code to be executed
 */
#define clib_llist_foreach_safe(LP,name,H,E,body)			\
do {									\
  clib_llist_index_t _ll_var (HI) = clib_llist_entry_index (LP, H);	\
  clib_llist_index_t _ll_var (EI), _ll_var (NI);			\
  _ll_var (EI) = _lnext ((H),name);					\
  while (_ll_var (EI) != _ll_var (HI))					\
    { 									\
      (E) = pool_elt_at_index (LP, _ll_var (EI));			\
      _ll_var (NI) = _lnext ((E),name);					\
      do { body; } while (0);						\
      _ll_var (EI) = _ll_var (NI);					\
    }									\
} while (0)
/**
 * Walk list starting at head in reverse order
 *
 * @param LP	linked list pool
 * @param name	list anchor name
 * @param H	head entry
 * @param E	entry iterator
 * @param body	code to be executed
 */
#define clib_llist_foreach_reverse(LP,name,H,E,body)			\
do {									\
  typeof (LP) _ll_var (p);						\
  (E) = clib_llist_prev (LP,name,H);					\
  while (E != H)							\
    { 									\
      _ll_var (p) = clib_llist_prev (LP,name,E);			\
      do { body; } while (0);						\
      (E) = _ll_var (p);						\
    }									\
} while (0)

#endif /* SRC_VPPINFRA_CLIB_LLIST_H_ */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
>vec_len (p->free_indices); i++) ASSERT (clib_bitmap_get (p->free_bitmap, p->free_indices[i]) == 1); } always_inline void pool_header_validate_index (void *v, uword index) { pool_header_t *p = pool_header (v); if (v) vec_validate (p->free_bitmap, index / BITS (uword)); } #define pool_validate_index(v,i) \ do { \ uword __pool_validate_index = (i); \ vec_validate_ha ((v), __pool_validate_index, \ pool_aligned_header_bytes, /* align */ 0); \ pool_header_validate_index ((v), __pool_validate_index); \ } while (0) /** Number of active elements in a pool. * @return Number of active elements in a pool */ always_inline uword pool_elts (void *v) { uword ret = vec_len (v); if (v) ret -= vec_len (pool_header (v)->free_indices); return ret; } /** Number of elements in pool vector. @note You probably want to call pool_elts() instead. */ #define pool_len(p) vec_len(p) /** Number of elements in pool vector (usable as an lvalue) @note You probably don't want to use this macro. */ #define _pool_len(p) _vec_len(p) /** Memory usage of pool header. */ always_inline uword pool_header_bytes (void *v) { pool_header_t *p = pool_header (v); if (!v) return 0; return vec_bytes (p->free_bitmap) + vec_bytes (p->free_indices); } /** Memory usage of pool. */ #define pool_bytes(P) (vec_bytes (P) + pool_header_bytes (P)) /** Local variable naming macro. */ #define _pool_var(v) _pool_##v /** Queries whether pool has at least N_FREE free elements. */ always_inline uword pool_free_elts (void *v) { pool_header_t *p = pool_header (v); uword n_free = 0; if (v) { n_free += vec_len (p->free_indices); /* Space left at end of vector? */ n_free += vec_capacity (v, sizeof (p[0])) - vec_len (v); } return n_free; } /** Allocate an object E from a pool P (general version). First search free list. If nothing is free extend vector of objects. */ #define _pool_get_aligned_internal_numa(P,E,A,Z,N) \ do { \ pool_header_t * _pool_var (p) = pool_header (P); \ uword _pool_var (l); \ \ STATIC_ASSERT(A==0 || ((A % sizeof(P[0]))==0) \ || ((sizeof(P[0]) % A) == 0), \ "Pool aligned alloc of incorrectly sized object"); \ _pool_var (l) = 0; \ if (P) \ _pool_var (l) = vec_len (_pool_var (p)->free_indices); \ \ if (_pool_var (l) > 0) \ { \ /* Return free element from free list. */ \ uword _pool_var (i) = \ _pool_var (p)->free_indices[_pool_var (l) - 1]; \ (E) = (P) + _pool_var (i); \ _pool_var (p)->free_bitmap = \ clib_bitmap_andnoti_notrim (_pool_var (p)->free_bitmap, \ _pool_var (i)); \ _vec_len (_pool_var (p)->free_indices) = _pool_var (l) - 1; \ CLIB_MEM_UNPOISON((E), sizeof((E)[0])); \ } \ else \ { \ /* fixed-size, preallocated pools cannot expand */ \ if ((P) && _pool_var(p)->max_elts) \ { \ clib_warning ("can't expand fixed-size pool"); \ os_out_of_memory(); \ } \ /* Nothing on free list, make a new element and return it. */ \ P = _vec_resize_numa (P, \ /* length_increment */ 1, \ /* new size */ (vec_len (P) + 1) * sizeof (P[0]), \ pool_aligned_header_bytes, \ /* align */ (A), \ /* numa */ (N)); \ E = vec_end (P) - 1; \ } \ if (Z) \ memset(E, 0, sizeof(*E)); \ } while (0) #define pool_get_aligned_zero_numa(P,E,A,Z,S) \ _pool_get_aligned_internal_numa(P,E,A,Z,S) #define pool_get_aligned_numa(P,E,A,S) \ _pool_get_aligned_internal_numa(P,E,A,0/*zero*/,S) #define pool_get_numa(P,E,S) \ _pool_get_aligned_internal_numa(P,E,0/*align*/,0/*zero*/,S) #define _pool_get_aligned_internal(P,E,A,Z) \ _pool_get_aligned_internal_numa(P,E,A,Z,VEC_NUMA_UNSPECIFIED) /** Allocate an object E from a pool P with alignment A */ #define pool_get_aligned(P,E,A) _pool_get_aligned_internal(P,E,A,0) /** Allocate an object E from a pool P with alignment A and zero it */ #define pool_get_aligned_zero(P,E,A) _pool_get_aligned_internal(P,E,A,1) /** Allocate an object E from a pool P (unspecified alignment). */ #define pool_get(P,E) pool_get_aligned(P,E,0) /** Allocate an object E from a pool P and zero it */ #define pool_get_zero(P,E) pool_get_aligned_zero(P,E,0) /** See if pool_get will expand the pool or not */ #define pool_get_aligned_will_expand(P,YESNO,A) \ do { \ pool_header_t * _pool_var (p) = pool_header (P); \ uword _pool_var (l); \ \ _pool_var (l) = 0; \ if (P) \ { \ if (_pool_var (p)->max_elts) \ _pool_var (l) = _pool_var (p)->max_elts; \ else \ _pool_var (l) = vec_len (_pool_var (p)->free_indices); \ } \ \ /* Free elements, certainly won't expand */ \ if (_pool_var (l) > 0) \ YESNO=0; \ else \ { \ /* Nothing on free list, make a new element and return it. */ \ YESNO = _vec_resize_will_expand \ (P, \ /* length_increment */ 1, \ /* new size */ (vec_len (P) + 1) * sizeof (P[0]), \ pool_aligned_header_bytes, \ /* align */ (A)); \ } \ } while (0) /** Tell the caller if pool get will expand the pool */ #define pool_get_will_expand(P,YESNO) pool_get_aligned_will_expand(P,YESNO,0) /** Use free bitmap to query whether given element is free. */ #define pool_is_free(P,E) \ ({ \ pool_header_t * _pool_var (p) = pool_header (P); \ uword _pool_var (i) = (E) - (P); \ (_pool_var (i) < vec_len (P)) ? clib_bitmap_get (_pool_var (p)->free_bitmap, _pool_i) : 1; \ }) /** Use free bitmap to query whether given index is free */ #define pool_is_free_index(P,I) pool_is_free((P),(P)+(I)) /** Free an object E in pool P. */ #define pool_put(P,E) \ do { \ typeof (P) _pool_var(p__) = (P); \ typeof (E) _pool_var(e__) = (E); \ pool_header_t * _pool_var (p) = pool_header (_pool_var(p__)); \ uword _pool_var (l) = _pool_var(e__) - _pool_var(p__); \ ASSERT (vec_is_member (_pool_var(p__), _pool_var(e__))); \ ASSERT (! pool_is_free (_pool_var(p__), _pool_var(e__))); \ \ /* Add element to free bitmap and to free list. */ \ _pool_var (p)->free_bitmap = \ clib_bitmap_ori_notrim (_pool_var (p)->free_bitmap, \ _pool_var (l)); \ \ /* Preallocated pool? */ \ if (_pool_var (p)->max_elts) \ { \ ASSERT(_pool_var(l) < _pool_var (p)->max_elts); \ _pool_var(p)->free_indices[_vec_len(_pool_var(p)->free_indices)] = \ _pool_var(l); \ _vec_len(_pool_var(p)->free_indices) += 1; \ } \ else \ vec_add1 (_pool_var (p)->free_indices, _pool_var (l)); \ \ CLIB_MEM_POISON(_pool_var(e__), sizeof(_pool_var(e__)[0])); \ } while (0) /** Free pool element with given index. */ #define pool_put_index(p,i) \ do { \ typeof (p) _e = (p) + (i); \ pool_put (p, _e); \ } while (0) /** Allocate N more free elements to pool (general version). */ #define pool_alloc_aligned(P,N,A) \ do { \ pool_header_t * _p; \ \ if ((P)) \ { \ _p = pool_header (P); \ if (_p->max_elts) \ { \ clib_warning ("Can't expand fixed-size pool"); \ os_out_of_memory(); \ } \ } \ \ (P) = _vec_resize ((P), 0, (vec_len (P) + (N)) * sizeof (P[0]), \ pool_aligned_header_bytes, \ (A)); \ _p = pool_header (P); \ vec_resize (_p->free_indices, (N)); \ _vec_len (_p->free_indices) -= (N); \ } while (0) /** Allocate N more free elements to pool (unspecified alignment). */ #define pool_alloc(P,N) pool_alloc_aligned(P,N,0) /** * Return copy of pool with alignment * * @param P pool to copy * @param A alignment (may be zero) * @return copy of pool */ #define pool_dup_aligned(P,A) \ ({ \ typeof (P) _pool_var (new) = 0; \ pool_header_t * _pool_var (ph), * _pool_var (new_ph); \ u32 _pool_var (n) = pool_len (P); \ if ((P)) \ { \ _pool_var (new) = _vec_resize (_pool_var (new), _pool_var (n), \ _pool_var (n) * sizeof ((P)[0]), \ pool_aligned_header_bytes, (A)); \ clib_memcpy_fast (_pool_var (new), (P), \ _pool_var (n) * sizeof ((P)[0])); \ _pool_var (ph) = pool_header (P); \ _pool_var (new_ph) = pool_header (_pool_var (new)); \ _pool_var (new_ph)->free_bitmap = \ clib_bitmap_dup (_pool_var (ph)->free_bitmap); \ _pool_var (new_ph)->free_indices = \ vec_dup (_pool_var (ph)->free_indices); \ _pool_var (new_ph)->max_elts = _pool_var (ph)->max_elts; \ } \ _pool_var (new); \ }) /** * Return copy of pool without alignment * * @param P pool to copy * @return copy of pool */ #define pool_dup(P) pool_dup_aligned(P,0) /** Low-level free pool operator (do not call directly). */ always_inline void * _pool_free (void *v) { pool_header_t *p = pool_header (v); if (!v) return v; clib_bitmap_free (p->free_bitmap); if (p->max_elts) { int rv; rv = munmap (p->mmap_base, p->mmap_size); if (rv) clib_unix_warning ("munmap"); } else { vec_free (p->free_indices); vec_free_h (v, pool_aligned_header_bytes); } return 0; } static_always_inline uword pool_get_first_index (void *pool) { pool_header_t *h = pool_header (pool); return clib_bitmap_first_clear (h->free_bitmap); } static_always_inline uword pool_get_next_index (void *pool, uword last) { pool_header_t *h = pool_header (pool); return clib_bitmap_next_clear (h->free_bitmap, last + 1); } /** Free a pool. */ #define pool_free(p) (p) = _pool_free(p) /** Optimized iteration through pool. @param LO pointer to first element in chunk @param HI pointer to last element in chunk @param POOL pool to iterate across @param BODY operation to perform Optimized version which assumes that BODY is smart enough to process multiple (LOW,HI) chunks. See also pool_foreach(). */ #define pool_foreach_region(LO,HI,POOL,BODY) \ do { \ uword _pool_var (i), _pool_var (lo), _pool_var (hi), _pool_var (len); \ uword _pool_var (bl), * _pool_var (b); \ pool_header_t * _pool_var (p); \ \ _pool_var (p) = pool_header (POOL); \ _pool_var (b) = (POOL) ? _pool_var (p)->free_bitmap : 0; \ _pool_var (bl) = vec_len (_pool_var (b)); \ _pool_var (len) = vec_len (POOL); \ _pool_var (lo) = 0; \ \ for (_pool_var (i) = 0; \ _pool_var (i) <= _pool_var (bl); \ _pool_var (i)++) \ { \ uword _pool_var (m), _pool_var (f); \ _pool_var (m) = (_pool_var (i) < _pool_var (bl) \ ? _pool_var (b) [_pool_var (i)] \ : 1); \ while (_pool_var (m) != 0) \ { \ _pool_var (f) = first_set (_pool_var (m)); \ _pool_var (hi) = (_pool_var (i) * BITS (_pool_var (b)[0]) \ + min_log2 (_pool_var (f))); \ _pool_var (hi) = (_pool_var (i) < _pool_var (bl) \ ? _pool_var (hi) : _pool_var (len)); \ _pool_var (m) ^= _pool_var (f); \ if (_pool_var (hi) > _pool_var (lo)) \ { \ (LO) = _pool_var (lo); \ (HI) = _pool_var (hi); \ do { BODY; } while (0); \ } \ _pool_var (lo) = _pool_var (hi) + 1; \ } \ } \ } while (0) /** Iterate through pool. @param VAR A variable of same type as pool vector to be used as an iterator. @param POOL The pool to iterate across. @param BODY The operation to perform, typically a code block. See the example below. This macro will call @c BODY with each active pool element. It is a bad idea to allocate or free pool element from within @c pool_foreach. Build a vector of indices and dispose of them later. Or call pool_flush. @par Example @code{.c} proc_t *procs; // a pool of processes. proc_t *proc; // pointer to one process; used as the iterator. pool_foreach (proc, procs, ({ if (proc->state != PROC_STATE_RUNNING) continue; // check a running proc in some way ... })); @endcode @warning Because @c pool_foreach is a macro, syntax errors can be difficult to find inside @c BODY, let alone actual code bugs. One can temporarily split a complex @c pool_foreach into a trivial @c pool_foreach which builds a vector of active indices, and a vec_foreach() (or plain for-loop) to walk the active index vector. */ #define pool_foreach(VAR,POOL) \ if (POOL) \ for (VAR = POOL + pool_get_first_index (POOL); \ VAR < vec_end (POOL); \ VAR = POOL + pool_get_next_index (POOL, VAR - POOL)) #define pool_foreach_old(VAR,POOL,BODY) \ pool_foreach(VAR,POOL) \ { BODY; } /** Returns pointer to element at given index. ASSERTs that the supplied index is valid. Even though one can write correct code of the form @code p = pool_base + index; @endcode use of @c pool_elt_at_index is strongly suggested. */ #define pool_elt_at_index(p,i) \ ({ \ typeof (p) _e = (p) + (i); \ ASSERT (! pool_is_free (p, _e)); \ _e; \ }) /** Return next occupied pool index after @c i, useful for safe iteration. */ #define pool_next_index(P,I) \ ({ \ pool_header_t * _pool_var (p) = pool_header (P); \ uword _pool_var (rv) = (I) + 1; \ \ _pool_var(rv) = \ (_pool_var (rv) < vec_len (P) ? \ clib_bitmap_next_clear (_pool_var (p)->free_bitmap, _pool_var(rv)) \ : ~0); \ _pool_var(rv) = \ (_pool_var (rv) < vec_len (P) ? \ _pool_var (rv) : ~0); \ _pool_var(rv); \ }) #define pool_foreach_index(i,v) \ if (v) \ for (i = pool_get_first_index (v); \ i < vec_len (v); \ i = pool_get_next_index (v, i)) \ /** Iterate pool by index. */ #define pool_foreach_index_old(i,v,body) \ pool_foreach_index (i,v) \ { body; } /** * @brief Remove all elements from a pool in a safe way * * @param VAR each element in the pool * @param POOL The pool to flush * @param BODY The actions to perform on each element before it is returned to * the pool. i.e. before it is 'freed' */ #define pool_flush(VAR, POOL, BODY) \ { \ uword *_pool_var(ii), *_pool_var(dv) = NULL; \ \ pool_foreach((VAR), (POOL)) \ { \ vec_add1(_pool_var(dv), (VAR) - (POOL)); \ } \ vec_foreach(_pool_var(ii), _pool_var(dv)) \ { \ (VAR) = pool_elt_at_index((POOL), *_pool_var(ii)); \ do { BODY; } while (0); \ pool_put((POOL), (VAR)); \ } \ vec_free(_pool_var(dv)); \ } #endif /* included_pool_h */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */