summaryrefslogtreecommitdiffstats
path: root/src/vppinfra/mem.h
blob: dfe8de9362629347511eac0b773dee8f424e0360 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
  Copyright (c) 2001, 2002, 2003 Eliot Dresselhaus

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#ifndef _included_clib_mem_h
#define _included_clib_mem_h

#include <stdarg.h>
#include <unistd.h>
#include <sys/mman.h>

#include <vppinfra/clib.h>	/* uword, etc */
#include <vppinfra/clib_error.h>

#include <vppinfra/os.h>
#include <vppinfra/string.h>	/* memcpy, clib_memset */
#include <vppinfra/sanitizer.h>

#define CLIB_MAX_MHEAPS 256
#define CLIB_MAX_NUMAS 16
#define CLIB_MEM_VM_MAP_FAILED ((void *) ~0)
#define CLIB_MEM_ERROR (-1)

typedef enum
{
  CLIB_MEM_PAGE_SZ_UNKNOWN = 0,
  CLIB_MEM_PAGE_SZ_DEFAULT = 1,
  CLIB_MEM_PAGE_SZ_DEFAULT_HUGE = 2,
  CLIB_MEM_PAGE_SZ_4K = 12,
  CLIB_MEM_PAGE_SZ_16K = 14,
  CLIB_MEM_PAGE_SZ_64K = 16,
  CLIB_MEM_PAGE_SZ_1M = 20,
  CLIB_MEM_PAGE_SZ_2M = 21,
  CLIB_MEM_PAGE_SZ_16M = 24,
  CLIB_MEM_PAGE_SZ_32M = 25,
  CLIB_MEM_PAGE_SZ_512M = 29,
  CLIB_MEM_PAGE_SZ_1G = 30,
  CLIB_MEM_PAGE_SZ_16G = 34,
} clib_mem_page_sz_t;

typedef struct _clib_mem_vm_map_hdr
{
  /* base address */
  uword base_addr;

  /* number of pages */
  uword num_pages;

  /* page size (log2) */
  clib_mem_page_sz_t log2_page_sz;

  /* file descriptor, -1 if memory is not shared */
  int fd;

  /* allocation mame */
#define CLIB_VM_MAP_HDR_NAME_MAX_LEN 64
  char name[CLIB_VM_MAP_HDR_NAME_MAX_LEN];

  /* linked list */
  struct _clib_mem_vm_map_hdr *prev, *next;
} clib_mem_vm_map_hdr_t;

#define foreach_clib_mem_heap_flag \
  _(0, LOCKED, "locked") \
  _(1, UNMAP_ON_DESTROY, "unmap-on-destroy")

typedef enum
{
#define _(i, v, s) CLIB_MEM_HEAP_F_##v = (1 << i),
  foreach_clib_mem_heap_flag
#undef _
} clib_mem_heap_flag_t;

typedef struct
{
  /* base address */
  void *base;

  /* dlmalloc mspace */
  void *mspace;

  /* heap size */
  uword size;

  /* page size (log2) */
  clib_mem_page_sz_t log2_page_sz:8;

  /* flags */
  clib_mem_heap_flag_t flags:8;

  /* name - _MUST_ be last */
  char name[0];
} clib_mem_heap_t;

typedef struct
{
  /* log2 system page size */
  clib_mem_page_sz_t log2_page_sz;

  /* log2 default hugepage size */
  clib_mem_page_sz_t log2_default_hugepage_sz;

  /* log2 system default hugepage size */
  clib_mem_page_sz_t log2_sys_default_hugepage_sz;

  /* bitmap of available numa nodes */
  u32 numa_node_bitmap;

  /* per CPU heaps */
  void *per_cpu_mheaps[CLIB_MAX_MHEAPS];

  /* per NUMA heaps */
  void *per_numa_mheaps[CLIB_MAX_NUMAS];

  /* memory maps */
  clib_mem_vm_map_hdr_t *first_map, *last_map;

  /* map lock */
  u8 map_lock;

  /* last error */
  clib_error_t *error;
} clib_mem_main_t;

extern clib_mem_main_t clib_mem_main;

/* Unspecified NUMA socket */
#define VEC_NUMA_UNSPECIFIED (0xFF)

always_inline clib_mem_heap_t *
clib_mem_get_per_cpu_heap (void)
{
  int cpu = os_get_thread_index ();
  return clib_mem_main.per_cpu_mheaps[cpu];
}

always_inline void *
clib_mem_set_per_cpu_heap (void *new_heap)
{
  int cpu = os_get_thread_index ();
  void *old = clib_mem_main.per_cpu_mheaps[cpu];
  clib_mem_main.per_cpu_mheaps[cpu] = new_heap;
  return old;
}

always_inline void *
clib_mem_get_per_numa_heap (u32 numa_id)
{
  ASSERT (numa_id < ARRAY_LEN (clib_mem_main.per_numa_mheaps));
  return clib_mem_main.per_numa_mheaps[numa_id];
}

always_inline void *
clib_mem_set_per_numa_heap (void *new_heap)
{
  int numa = os_get_numa_index ();
  void *old = clib_mem_main.per_numa_mheaps[numa];
  clib_mem_main.per_numa_mheaps[numa] = new_heap;
  return old;
}

always_inline void
clib_mem_set_thread_index (void)
{
  /*
   * Find an unused slot in the per-cpu-mheaps array,
   * and grab it for this thread. We need to be able to
   * push/pop the thread heap without affecting other thread(s).
   */
  int i;
  if (__os_thread_index != 0)
    return;
  for (i = 0; i < ARRAY_LEN (clib_mem_main.per_cpu_mheaps); i++)
    if (clib_atomic_bool_cmp_and_swap (&clib_mem_main.per_cpu_mheaps[i],
				       0, clib_mem_main.per_cpu_mheaps[0]))
      {
	os_set_thread_index (i);
	break;
      }
  ASSERT (__os_thread_index > 0);
}

always_inline uword
clib_mem_size_nocheck (void *p)
{
  size_t mspace_usable_size_with_delta (const void *p);
  return mspace_usable_size_with_delta (p);
}

/* Memory allocator which may call os_out_of_memory() if it fails */
always_inline void *
clib_mem_alloc_aligned_at_offset (uword size, uword align, uword align_offset,
				  int os_out_of_memory_on_failure)
{
  void *mspace_get_aligned (void *msp, unsigned long n_user_data_bytes,
			    unsigned long align, unsigned long align_offset);
  clib_mem_heap_t *h = clib_mem_get_per_cpu_heap ();
  void *p;

  if (align_offset > align)
    {
      if (align > 0)
	align_offset %= align;
      else
	align_offset = align;
    }

  p = mspace_get_aligned (h->mspace, size, align, align_offset);

  if (PREDICT_FALSE (0 == p))
    {
      if (os_out_of_memory_on_failure)
	os_out_of_memory ();
      return 0;
    }

  CLIB_MEM_UNPOISON (p, size);
  return p;
}

/* Memory allocator which calls os_out_of_memory() when it fails */
always_inline void *
clib_mem_alloc (uword size)
{
  return clib_mem_alloc_aligned_at_offset (size, /* align */ 1,
					   /* align_offset */ 0,
					   /* os_out_of_memory */ 1);
}

always_inline void *
clib_mem_alloc_aligned (uword size, uword align)
{
  return clib_mem_alloc_aligned_at_offset (size, align, /* align_offset */ 0,
					   /* os_out_of_memory */ 1);
}

/* Memory allocator which calls os_out_of_memory() when it fails */
always_inline void *
clib_mem_alloc_or_null (uword size)
{
  return clib_mem_alloc_aligned_at_offset (size, /* align */ 1,
					   /* align_offset */ 0,
					   /* os_out_of_memory */ 0);
}

always_inline void *
clib_mem_alloc_aligned_or_null (uword size, uword align)
{
  return clib_mem_alloc_aligned_at_offset (size, align, /* align_offset */ 0,
					   /* os_out_of_memory */ 0);
}



/* Memory allocator which panics when it fails.
   Use macro so that clib_panic macro can expand __FUNCTION__ and __LINE__. */
#define clib_mem_alloc_aligned_no_fail(size,align)				\
({										\
  uword _clib_mem_alloc_size = (size);						\
  void * _clib_mem_alloc_p;							\
  _clib_mem_alloc_p = clib_mem_alloc_aligned (_clib_mem_alloc_size, (align));	\
  if (! _clib_mem_alloc_p)							\
    clib_panic ("failed to allocate %d bytes", _clib_mem_alloc_size);		\
  _clib_mem_alloc_p;								\
})

#define clib_mem_alloc_no_fail(size) clib_mem_alloc_aligned_no_fail(size,1)

/* Alias to stack allocator for naming consistency. */
#define clib_mem_alloc_stack(bytes) __builtin_alloca(bytes)

always_inline uword
clib_mem_is_heap_object (void *p)
{
  int mspace_is_heap_object (void *msp, void *p);
  clib_mem_heap_t *h = clib_mem_get_per_cpu_heap ();
  return mspace_is_heap_object (h->mspace, p);
}

always_inline void
clib_mem_free (void *p)
{
  void mspace_put (void *msp, void *p_arg);
  clib_mem_heap_t *h = clib_mem_get_per_cpu_heap ();

  /* Make sure object is in the correct heap. */
  ASSERT (clib_mem_is_heap_object (p));

  CLIB_MEM_POISON (p, clib_mem_size_nocheck (p));

  mspace_put (h->mspace, p);
}

always_inline void *
clib_mem_realloc (void *p, uword new_size, uword old_size)
{
  /* By default use alloc, copy and free to emulate realloc. */
  void *q = clib_mem_alloc (new_size);
  if (q)
    {
      uword copy_size;
      if (old_size < new_size)
	copy_size = old_size;
      else
	copy_size = new_size;
      clib_memcpy_fast (q, p, copy_size);
      clib_mem_free (p);
    }
  return q;
}

always_inline uword
clib_mem_size (void *p)
{
  ASSERT (clib_mem_is_heap_object (p));
  return clib_mem_size_nocheck (p);
}

always_inline void
clib_mem_free_s (void *p)
{
  uword size = clib_mem_size (p);
  CLIB_MEM_UNPOISON (p, size);
  memset_s_inline (p, size, 0, size);
  clib_mem_free (p);
}

always_inline clib_mem_heap_t *
clib_mem_get_heap (void)
{
  return clib_mem_get_per_cpu_heap ();
}

always_inline clib_mem_heap_t *
clib_mem_set_heap (clib_mem_heap_t * heap)
{
  return clib_mem_set_per_cpu_heap (heap);
}

void clib_mem_destroy_heap (clib_mem_heap_t * heap);
clib_mem_heap_t *clib_mem_create_heap (void *base, uword size, int is_locked,
				       char *fmt, ...);

void clib_mem_main_init ();
void *clib_mem_init (void *base, uword size);
void *clib_mem_init_with_page_size (uword memory_size,
				    clib_mem_page_sz_t log2_page_sz);
void *clib_mem_init_thread_safe (void *memory, uword memory_size);

void clib_mem_exit (void);

void clib_mem_trace (int enable);

int clib_mem_is_traced (void);

typedef struct
{
  /* Total number of objects allocated. */
  uword object_count;

  /* Total allocated bytes.  Bytes used and free.
     used + free = total */
  uword bytes_total, bytes_used, bytes_free;

  /* Number of bytes used by mheap data structure overhead
     (e.g. free lists, mheap header). */
  uword bytes_overhead;

  /* Amount of free space returned to operating system. */
  uword bytes_free_reclaimed;

  /* For malloc which puts small objects in sbrk region and
     large objects in mmap'ed regions. */
  uword bytes_used_sbrk;
  uword bytes_used_mmap;

  /* Max. number of bytes in this heap. */
  uword bytes_max;
} clib_mem_usage_t;

void clib_mem_get_heap_usage (clib_mem_heap_t * heap,
			      clib_mem_usage_t * usage);

void *clib_mem_get_heap_base (clib_mem_heap_t * heap);
uword clib_mem_get_heap_size (clib_mem_heap_t * heap);
uword clib_mem_get_heap_free_space (clib_mem_heap_t * heap);

u8 *format_clib_mem_usage (u8 * s, va_list * args);
u8 *format_clib_mem_heap (u8 * s, va_list * va);
u8 *format_clib_mem_page_stats (u8 * s, va_list * va);

/* Allocate virtual address space. */
always_inline void *
clib_mem_vm_alloc (uword size)
{
  void *mmap_addr;
  uword flags = MAP_PRIVATE;

#ifdef MAP_ANONYMOUS
  flags |= MAP_ANONYMOUS;
#endif

  mmap_addr = mmap (0, size, PROT_READ | PROT_WRITE, flags, -1, 0);
  if (mmap_addr == (void *) -1)
    mmap_addr = 0;
  else
    CLIB_MEM_UNPOISON (mmap_addr, size);

  return mmap_addr;
}

always_inline void
clib_mem_vm_free (void *addr, uword size)
{
  munmap (addr, size);
}

void *clib_mem_vm_map_internal (void *base, clib_mem_page_sz_t log2_page_sz,
				uword size, int fd, uword offset, char *name);

void *clib_mem_vm_map (void *start, uword size,
		       clib_mem_page_sz_t log2_page_size, char *fmt, ...);
void *clib_mem_vm_map_stack (uword size, clib_mem_page_sz_t log2_page_size,
			     char *fmt, ...);
void *clib_mem_vm_map_shared (void *start, uword size, int fd, uword offset,
			      char *fmt, ...);
int clib_mem_vm_unmap (void *base);
clib_mem_vm_map_hdr_t *clib_mem_vm_get_next_map_hdr (clib_mem_vm_map_hdr_t *
						     hdr);

static_always_inline clib_mem_page_sz_t
clib_mem_get_log2_page_size (void)
{
  return clib_mem_main.log2_page_sz;
}

static_always_inline uword
clib_mem_get_page_size (void)
{
  return 1ULL << clib_mem_main.log2_page_sz;
}

static_always_inline void
clib_mem_set_log2_default_hugepage_size (clib_mem_page_sz_t log2_page_sz)
{
  clib_mem_main.log2_default_hugepage_sz = log2_page_sz;
}

static_always_inline clib_mem_page_sz_t
clib_mem_get_log2_default_hugepage_size ()
{
  return clib_mem_main.log2_default_hugepage_sz;
}

static_always_inline uword
clib_mem_get_default_hugepage_size (void)
{
  return 1ULL << clib_mem_main.log2_default_hugepage_sz;
}

int clib_mem_vm_create_fd (clib_mem_page_sz_t log2_page_size, char *fmt, ...);
uword clib_mem_get_fd_page_size (int fd);
clib_mem_page_sz_t clib_mem_get_fd_log2_page_size (int fd);
uword clib_mem_vm_reserve (uword start, uword size,
			   clib_mem_page_sz_t log2_page_sz);
u64 *clib_mem_vm_get_paddr (void *mem, clib_mem_page_sz_t log2_page_size,
			    int n_pages);
void clib_mem_destroy (void);
int clib_mem_set_numa_affinity (u8 numa_node, int force);
int clib_mem_set_default_numa_affinity ();
void clib_mem_vm_randomize_va (uword * requested_va,
			       clib_mem_page_sz_t log2_page_size);
void mheap_trace (clib_mem_heap_t * v, int enable);
uword clib_mem_trace_enable_disable (uword enable);
void clib_mem_trace (int enable);

always_inline uword
clib_mem_round_to_page_size (uword size, clib_mem_page_sz_t log2_page_size)
{
  ASSERT (log2_page_size != CLIB_MEM_PAGE_SZ_UNKNOWN);

  if (log2_page_size == CLIB_MEM_PAGE_SZ_DEFAULT)
    log2_page_size = clib_mem_get_log2_page_size ();
  else if (log2_page_size == CLIB_MEM_PAGE_SZ_DEFAULT_HUGE)
    log2_page_size = clib_mem_get_log2_default_hugepage_size ();

  return round_pow2 (size, 1ULL << log2_page_size);
}

typedef struct
{
  clib_mem_page_sz_t log2_page_sz;
  uword total;
  uword mapped;
  uword not_mapped;
  uword per_numa[CLIB_MAX_NUMAS];
  uword unknown;
} clib_mem_page_stats_t;

void clib_mem_get_page_stats (void *start, clib_mem_page_sz_t log2_page_size,
			      uword n_pages, clib_mem_page_stats_t * stats);

static_always_inline int
vlib_mem_get_next_numa_node (int numa)
{
  clib_mem_main_t *mm = &clib_mem_main;
  u32 bitmap = mm->numa_node_bitmap;

  if (numa >= 0)
    bitmap &= ~pow2_mask (numa + 1);
  if (bitmap == 0)
    return -1;

  return count_trailing_zeros (bitmap);
}

static_always_inline clib_mem_page_sz_t
clib_mem_log2_page_size_validate (clib_mem_page_sz_t log2_page_size)
{
  if (log2_page_size == CLIB_MEM_PAGE_SZ_DEFAULT)
    return clib_mem_get_log2_page_size ();
  if (log2_page_size == CLIB_MEM_PAGE_SZ_DEFAULT_HUGE)
    return clib_mem_get_log2_default_hugepage_size ();
  return log2_page_size;
}

static_always_inline uword
clib_mem_page_bytes (clib_mem_page_sz_t log2_page_size)
{
  return 1ULL << clib_mem_log2_page_size_validate (log2_page_size);
}

static_always_inline clib_error_t *
clib_mem_get_last_error (void)
{
  return clib_mem_main.error;
}

/* bulk allocator */

typedef void *clib_mem_bulk_handle_t;
clib_mem_bulk_handle_t clib_mem_bulk_init (u32 elt_sz, u32 align,
					   u32 min_elts_per_chunk);
void clib_mem_bulk_destroy (clib_mem_bulk_handle_t h);
void *clib_mem_bulk_alloc (clib_mem_bulk_handle_t h);
void clib_mem_bulk_free (clib_mem_bulk_handle_t h, void *p);
u8 *format_clib_mem_bulk (u8 *s, va_list *args);

#include <vppinfra/error.h>	/* clib_panic */

#endif /* _included_clib_mem_h */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
'n2433' href='#n2433'>2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
#!/usr/bin/env python3

import unittest
import os
from socket import AF_INET, AF_INET6, inet_pton

from framework import tag_fixme_vpp_workers, tag_fixme_ubuntu2204, tag_fixme_debian11
from framework import VppTestCase, VppTestRunner
from vpp_neighbor import VppNeighbor, find_nbr
from vpp_ip_route import (
    VppIpRoute,
    VppRoutePath,
    find_route,
    VppIpTable,
    DpoProto,
    FibPathType,
    VppIpInterfaceAddress,
)
from vpp_papi import VppEnum
from vpp_ip import VppIpPuntRedirect

import scapy.compat
from scapy.packet import Raw
from scapy.layers.l2 import Ether, ARP, Dot1Q
from scapy.layers.inet import IP, UDP, TCP
from scapy.layers.inet6 import IPv6
from scapy.contrib.mpls import MPLS
from scapy.layers.inet6 import IPv6


NUM_PKTS = 67

# not exported by scapy, so redefined here
arp_opts = {"who-has": 1, "is-at": 2}


class ARPTestCase(VppTestCase):
    """ARP Test Case"""

    @classmethod
    def setUpClass(cls):
        super(ARPTestCase, cls).setUpClass()

    @classmethod
    def tearDownClass(cls):
        super(ARPTestCase, cls).tearDownClass()

    def setUp(self):
        super(ARPTestCase, self).setUp()

        # create 3 pg interfaces
        self.create_pg_interfaces(range(4))

        # pg0 configured with ip4 and 6 addresses used for input
        # pg1 configured with ip4 and 6 addresses used for output
        # pg2 is unnumbered to pg0
        for i in self.pg_interfaces:
            i.admin_up()

        self.pg0.config_ip4()
        self.pg0.config_ip6()
        self.pg0.resolve_arp()

        self.pg1.config_ip4()
        self.pg1.config_ip6()

        # pg3 in a different VRF
        self.tbl = VppIpTable(self, 1)
        self.tbl.add_vpp_config()

        self.pg3.set_table_ip4(1)
        self.pg3.config_ip4()

    def tearDown(self):
        self.pg0.unconfig_ip4()
        self.pg0.unconfig_ip6()

        self.pg1.unconfig_ip4()
        self.pg1.unconfig_ip6()

        self.pg3.unconfig_ip4()
        self.pg3.set_table_ip4(0)

        for i in self.pg_interfaces:
            i.admin_down()

        super(ARPTestCase, self).tearDown()

    def verify_arp_req(self, rx, smac, sip, dip):
        ether = rx[Ether]
        self.assertEqual(ether.dst, "ff:ff:ff:ff:ff:ff")
        self.assertEqual(ether.src, smac)
        self.assertEqual(ether.type, 0x0806)

        arp = rx[ARP]
        self.assertEqual(arp.hwtype, 1)
        self.assertEqual(arp.ptype, 0x800)
        self.assertEqual(arp.hwlen, 6)
        self.assertEqual(arp.plen, 4)
        self.assertEqual(arp.op, arp_opts["who-has"])
        self.assertEqual(arp.hwsrc, smac)
        self.assertEqual(arp.hwdst, "00:00:00:00:00:00")
        self.assertEqual(arp.psrc, sip)
        self.assertEqual(arp.pdst, dip)

    def verify_arp_resp(self, rx, smac, dmac, sip, dip):
        ether = rx[Ether]
        self.assertEqual(ether.dst, dmac)
        self.assertEqual(ether.src, smac)
        self.assertEqual(ether.type, 0x0806)

        arp = rx[ARP]
        self.assertEqual(arp.hwtype, 1)
        self.assertEqual(arp.ptype, 0x800)
        self.assertEqual(arp.hwlen, 6)
        self.assertEqual(arp.plen, 4)
        self.assertEqual(arp.op, arp_opts["is-at"])
        self.assertEqual(arp.hwsrc, smac)
        self.assertEqual(arp.hwdst, dmac)
        self.assertEqual(arp.psrc, sip)
        self.assertEqual(arp.pdst, dip)

    def verify_arp_vrrp_resp(self, rx, smac, dmac, sip, dip):
        ether = rx[Ether]
        self.assertEqual(ether.dst, dmac)
        self.assertEqual(ether.src, smac)

        arp = rx[ARP]
        self.assertEqual(arp.hwtype, 1)
        self.assertEqual(arp.ptype, 0x800)
        self.assertEqual(arp.hwlen, 6)
        self.assertEqual(arp.plen, 4)
        self.assertEqual(arp.op, arp_opts["is-at"])
        self.assertNotEqual(arp.hwsrc, smac)
        self.assertTrue("00:00:5e:00:01" in arp.hwsrc or "00:00:5E:00:01" in arp.hwsrc)
        self.assertEqual(arp.hwdst, dmac)
        self.assertEqual(arp.psrc, sip)
        self.assertEqual(arp.pdst, dip)

    def verify_ip(self, rx, smac, dmac, sip, dip):
        ether = rx[Ether]
        self.assertEqual(ether.dst, dmac)
        self.assertEqual(ether.src, smac)
        self.assertEqual(ether.type, 0x0800)

        ip = rx[IP]
        self.assertEqual(ip.src, sip)
        self.assertEqual(ip.dst, dip)

    def verify_ip_o_mpls(self, rx, smac, dmac, label, sip, dip):
        ether = rx[Ether]
        self.assertEqual(ether.dst, dmac)
        self.assertEqual(ether.src, smac)
        self.assertEqual(ether.type, 0x8847)

        mpls = rx[MPLS]
        self.assertTrue(mpls.label, label)

        ip = rx[IP]
        self.assertEqual(ip.src, sip)
        self.assertEqual(ip.dst, dip)

    def get_arp_rx_requests(self, itf):
        """Get ARP RX request stats for and interface"""
        return self.statistics["/net/arp/rx/requests"][:, itf.sw_if_index].sum()

    def get_arp_tx_requests(self, itf):
        """Get ARP TX request stats for and interface"""
        return self.statistics["/net/arp/tx/requests"][:, itf.sw_if_index].sum()

    def get_arp_rx_replies(self, itf):
        """Get ARP RX replies stats for and interface"""
        return self.statistics["/net/arp/rx/replies"][:, itf.sw_if_index].sum()

    def get_arp_tx_replies(self, itf):
        """Get ARP TX replies stats for and interface"""
        return self.statistics["/net/arp/tx/replies"][:, itf.sw_if_index].sum()

    def get_arp_rx_garp(self, itf):
        """Get ARP RX grat stats for and interface"""
        return self.statistics["/net/arp/rx/gratuitous"][:, itf.sw_if_index].sum()

    def get_arp_tx_garp(self, itf):
        """Get ARP RX grat stats for and interface"""
        return self.statistics["/net/arp/tx/gratuitous"][:, itf.sw_if_index].sum()

    def test_arp(self):
        """ARP"""

        #
        # Generate some hosts on the LAN
        #
        self.pg1.generate_remote_hosts(11)

        #
        # watch for:
        #  - all neighbour events
        #  - all neighbor events on pg1
        #  - neighbor events for host[1] on pg1
        #
        self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid())
        self.vapi.want_ip_neighbor_events(
            enable=1, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index
        )
        self.vapi.want_ip_neighbor_events(
            enable=1,
            pid=os.getpid(),
            sw_if_index=self.pg1.sw_if_index,
            ip=self.pg1.remote_hosts[1].ip4,
        )

        self.logger.info(self.vapi.cli("sh ip neighbor-watcher"))

        #
        # Send IP traffic to one of these unresolved hosts.
        #  expect the generation of an ARP request
        #
        p = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[1].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)

        self.verify_arp_req(
            rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4
        )

        self.logger.info(self.vapi.cli("sh ip neighbor-stats"))
        self.logger.info(self.vapi.cli("sh ip neighbor-stats pg1"))
        self.assert_equal(self.get_arp_tx_requests(self.pg1), 1)

        #
        # And a dynamic ARP entry for host 1
        #
        dyn_arp = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[1].mac,
            self.pg1.remote_hosts[1].ip4,
        )
        dyn_arp.add_vpp_config()
        self.assertTrue(dyn_arp.query_vpp_config())

        self.logger.info(self.vapi.cli("show ip neighbor-watcher"))

        # this matches all of the listnerers
        es = [self.vapi.wait_for_event(1, "ip_neighbor_event") for i in range(3)]
        for e in es:
            self.assertEqual(str(e.neighbor.ip_address), self.pg1.remote_hosts[1].ip4)

        #
        # now we expect IP traffic forwarded
        #
        dyn_p = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[1].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg0.add_stream(dyn_p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)

        self.verify_ip(
            rx[0],
            self.pg1.local_mac,
            self.pg1.remote_hosts[1].mac,
            self.pg0.remote_ip4,
            self.pg1._remote_hosts[1].ip4,
        )

        #
        # And a Static ARP entry for host 2
        #
        static_arp = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[2].mac,
            self.pg1.remote_hosts[2].ip4,
            is_static=1,
        )
        static_arp.add_vpp_config()
        es = [self.vapi.wait_for_event(1, "ip_neighbor_event") for i in range(2)]
        for e in es:
            self.assertEqual(str(e.neighbor.ip_address), self.pg1.remote_hosts[2].ip4)

        static_p = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[2].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg0.add_stream(static_p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)

        self.verify_ip(
            rx[0],
            self.pg1.local_mac,
            self.pg1.remote_hosts[2].mac,
            self.pg0.remote_ip4,
            self.pg1._remote_hosts[2].ip4,
        )

        #
        # remove all the listeners
        #
        self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid())
        self.vapi.want_ip_neighbor_events(
            enable=0, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index
        )
        self.vapi.want_ip_neighbor_events(
            enable=0,
            pid=os.getpid(),
            sw_if_index=self.pg1.sw_if_index,
            ip=self.pg1.remote_hosts[1].ip4,
        )

        #
        # flap the link. dynamic ARPs get flush, statics don't
        #
        self.pg1.admin_down()
        self.pg1.admin_up()

        self.pg0.add_stream(static_p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()
        rx = self.pg1.get_capture(1)

        self.verify_ip(
            rx[0],
            self.pg1.local_mac,
            self.pg1.remote_hosts[2].mac,
            self.pg0.remote_ip4,
            self.pg1._remote_hosts[2].ip4,
        )

        self.pg0.add_stream(dyn_p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)
        self.verify_arp_req(
            rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4
        )
        self.assert_equal(self.get_arp_tx_requests(self.pg1), 2)

        self.assertFalse(dyn_arp.query_vpp_config())
        self.assertTrue(static_arp.query_vpp_config())
        #
        # Send an ARP request from one of the so-far unlearned remote hosts
        #
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1._remote_hosts[3].mac) / ARP(
            op="who-has",
            hwsrc=self.pg1._remote_hosts[3].mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg1._remote_hosts[3].ip4,
        )

        self.pg1.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg1.local_mac,
            self.pg1._remote_hosts[3].mac,
            self.pg1.local_ip4,
            self.pg1._remote_hosts[3].ip4,
        )
        self.logger.info(self.vapi.cli("sh ip neighbor-stats pg1"))
        self.assert_equal(self.get_arp_rx_requests(self.pg1), 1)
        self.assert_equal(self.get_arp_tx_replies(self.pg1), 1)

        #
        # VPP should have learned the mapping for the remote host
        #
        self.assertTrue(
            find_nbr(self, self.pg1.sw_if_index, self.pg1._remote_hosts[3].ip4)
        )
        #
        # Fire in an ARP request before the interface becomes IP enabled
        #
        self.pg2.generate_remote_hosts(4)

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg2.remote_hosts[3].ip4,
        )
        pt = (
            Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac)
            / Dot1Q(vlan=0)
            / ARP(
                op="who-has",
                hwsrc=self.pg2.remote_mac,
                pdst=self.pg1.local_ip4,
                psrc=self.pg2.remote_hosts[3].ip4,
            )
        )
        self.send_and_assert_no_replies(self.pg2, p, "interface not IP enabled")

        #
        # Make pg2 un-numbered to pg1
        #
        self.pg2.set_unnumbered(self.pg1.sw_if_index)

        #
        # test the unnumbered dump both by all interfaces and just the enabled
        # one
        #
        unnum = self.vapi.ip_unnumbered_dump()
        self.assertTrue(len(unnum))
        self.assertEqual(unnum[0].ip_sw_if_index, self.pg1.sw_if_index)
        self.assertEqual(unnum[0].sw_if_index, self.pg2.sw_if_index)
        unnum = self.vapi.ip_unnumbered_dump(self.pg2.sw_if_index)
        self.assertTrue(len(unnum))
        self.assertEqual(unnum[0].ip_sw_if_index, self.pg1.sw_if_index)
        self.assertEqual(unnum[0].sw_if_index, self.pg2.sw_if_index)

        #
        # We should respond to ARP requests for the unnumbered to address
        # once an attached route to the source is known
        #
        self.send_and_assert_no_replies(
            self.pg2, p, "ARP req for unnumbered address - no source"
        )

        attached_host = VppIpRoute(
            self,
            self.pg2.remote_hosts[3].ip4,
            32,
            [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)],
        )
        attached_host.add_vpp_config()

        self.pg2.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            self.pg1.local_ip4,
            self.pg2.remote_hosts[3].ip4,
        )

        self.pg2.add_stream(pt)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            self.pg1.local_ip4,
            self.pg2.remote_hosts[3].ip4,
        )

        #
        # A neighbor entry that has no associated FIB-entry
        #
        arp_no_fib = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[4].mac,
            self.pg1.remote_hosts[4].ip4,
            is_no_fib_entry=1,
        )
        arp_no_fib.add_vpp_config()

        #
        # check we have the neighbor, but no route
        #
        self.assertTrue(
            find_nbr(self, self.pg1.sw_if_index, self.pg1._remote_hosts[4].ip4)
        )
        self.assertFalse(find_route(self, self.pg1._remote_hosts[4].ip4, 32))
        #
        # pg2 is unnumbered to pg1, so we can form adjacencies out of pg2
        # from within pg1's subnet
        #
        arp_unnum = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg1.remote_hosts[5].mac,
            self.pg1.remote_hosts[5].ip4,
        )
        arp_unnum.add_vpp_config()

        p = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[5].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)

        self.verify_ip(
            rx[0],
            self.pg2.local_mac,
            self.pg1.remote_hosts[5].mac,
            self.pg0.remote_ip4,
            self.pg1._remote_hosts[5].ip4,
        )

        #
        # ARP requests from hosts in pg1's subnet sent on pg2 are replied to
        # with the unnumbered interface's address as the source
        #
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg1.remote_hosts[6].ip4,
        )

        self.pg2.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            self.pg1.local_ip4,
            self.pg1.remote_hosts[6].ip4,
        )

        #
        # An attached host route out of pg2 for an undiscovered hosts generates
        # an ARP request with the unnumbered address as the source
        #
        att_unnum = VppIpRoute(
            self,
            self.pg1.remote_hosts[7].ip4,
            32,
            [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)],
        )
        att_unnum.add_vpp_config()

        p = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[7].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)

        self.verify_arp_req(
            rx[0], self.pg2.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[7].ip4
        )

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg1.remote_hosts[7].ip4,
        )

        self.pg2.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            self.pg1.local_ip4,
            self.pg1.remote_hosts[7].ip4,
        )

        #
        # An attached host route as yet unresolved out of pg2 for an
        # undiscovered host, an ARP requests begets a response.
        #
        att_unnum1 = VppIpRoute(
            self,
            self.pg1.remote_hosts[8].ip4,
            32,
            [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)],
        )
        att_unnum1.add_vpp_config()

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg1.remote_hosts[8].ip4,
        )

        self.pg2.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            self.pg1.local_ip4,
            self.pg1.remote_hosts[8].ip4,
        )

        #
        # Send an ARP request from one of the so-far unlearned remote hosts
        # with a VLAN0 tag
        #
        p = (
            Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1._remote_hosts[9].mac)
            / Dot1Q(vlan=0)
            / ARP(
                op="who-has",
                hwsrc=self.pg1._remote_hosts[9].mac,
                pdst=self.pg1.local_ip4,
                psrc=self.pg1._remote_hosts[9].ip4,
            )
        )

        self.pg1.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg1.local_mac,
            self.pg1._remote_hosts[9].mac,
            self.pg1.local_ip4,
            self.pg1._remote_hosts[9].ip4,
        )

        #
        # Add a hierarchy of routes for a host in the sub-net.
        # Should still get an ARP resp since the cover is attached
        #
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg1.remote_mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg1.remote_hosts[10].ip4,
        )

        r1 = VppIpRoute(
            self,
            self.pg1.remote_hosts[10].ip4,
            30,
            [VppRoutePath(self.pg1.remote_hosts[10].ip4, self.pg1.sw_if_index)],
        )
        r1.add_vpp_config()

        self.pg1.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()
        rx = self.pg1.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg1.local_mac,
            self.pg1.remote_mac,
            self.pg1.local_ip4,
            self.pg1.remote_hosts[10].ip4,
        )

        r2 = VppIpRoute(
            self,
            self.pg1.remote_hosts[10].ip4,
            32,
            [VppRoutePath(self.pg1.remote_hosts[10].ip4, self.pg1.sw_if_index)],
        )
        r2.add_vpp_config()

        self.pg1.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()
        rx = self.pg1.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg1.local_mac,
            self.pg1.remote_mac,
            self.pg1.local_ip4,
            self.pg1.remote_hosts[10].ip4,
        )

        #
        # add an ARP entry that's not on the sub-net and so whose
        # adj-fib fails the refinement check. then send an ARP request
        # from that source
        #
        a1 = VppNeighbor(
            self, self.pg0.sw_if_index, self.pg0.remote_mac, "100.100.100.50"
        )
        a1.add_vpp_config()

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            psrc="100.100.100.50",
            pdst=self.pg0.remote_ip4,
        )
        self.send_and_assert_no_replies(self.pg0, p, "ARP req for from failed adj-fib")

        #
        # ERROR Cases
        #  1 - don't respond to ARP request for address not within the
        #      interface's sub-net
        #  1b - nor within the unnumbered subnet
        #  1c - nor within the subnet of a different interface
        #
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            pdst="10.10.10.3",
            psrc=self.pg0.remote_ip4,
        )
        self.send_and_assert_no_replies(
            self.pg0, p, "ARP req for non-local destination"
        )
        self.assertFalse(find_nbr(self, self.pg0.sw_if_index, "10.10.10.3"))

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst="10.10.10.3",
            psrc=self.pg1.remote_hosts[7].ip4,
        )
        self.send_and_assert_no_replies(
            self.pg0, p, "ARP req for non-local destination - unnum"
        )

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            pdst=self.pg1.local_ip4,
            psrc=self.pg1.remote_ip4,
        )
        self.send_and_assert_no_replies(self.pg0, p, "ARP req diff sub-net")
        self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg1.remote_ip4))

        #
        #  2 - don't respond to ARP request from an address not within the
        #      interface's sub-net
        #   2b - to a proxied address
        #   2c - not within a different interface's sub-net
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            psrc="10.10.10.3",
            pdst=self.pg0.local_ip4,
        )
        self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source")
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            psrc="10.10.10.3",
            pdst=self.pg0.local_ip4,
        )
        self.send_and_assert_no_replies(
            self.pg0, p, "ARP req for non-local source - unnum"
        )
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            psrc=self.pg1.remote_ip4,
            pdst=self.pg0.local_ip4,
        )
        self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source 2c")

        #
        #  3 - don't respond to ARP request from an address that belongs to
        #      the router
        #
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            psrc=self.pg0.local_ip4,
            pdst=self.pg0.local_ip4,
        )
        self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source")

        #
        #  4 - don't respond to ARP requests that has mac source different
        #      from ARP request HW source
        #
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc="00:00:00:DE:AD:BE",
            psrc=self.pg0.remote_ip4,
            pdst=self.pg0.local_ip4,
        )
        self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source")

        #
        #  5 - don't respond to ARP requests for address within the
        #      interface's sub-net but not the interface's address
        #
        self.pg0.generate_remote_hosts(2)
        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            psrc=self.pg0.remote_hosts[0].ip4,
            pdst=self.pg0.remote_hosts[1].ip4,
        )
        self.send_and_assert_no_replies(
            self.pg0, p, "ARP req for non-local destination"
        )

        #
        # cleanup
        #
        static_arp.remove_vpp_config()
        self.pg2.unset_unnumbered(self.pg1.sw_if_index)

        # need this to flush the adj-fibs
        self.pg2.unset_unnumbered(self.pg1.sw_if_index)
        self.pg2.admin_down()
        self.pg1.admin_down()

    def test_proxy_mirror_arp(self):
        """Interface Mirror Proxy ARP"""

        #
        # When VPP has an interface whose address is also applied to a TAP
        # interface on the host, then VPP's TAP interface will be unnumbered
        # to the 'real' interface and do proxy ARP from the host.
        # the curious aspect of this setup is that ARP requests from the host
        # will come from the VPP's own address.
        #
        self.pg0.generate_remote_hosts(2)

        arp_req_from_me = Ether(src=self.pg2.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst=self.pg0.remote_hosts[1].ip4,
            psrc=self.pg0.local_ip4,
        )

        #
        # Configure Proxy ARP for the subnet on PG0addresses on pg0
        #
        self.vapi.proxy_arp_add_del(
            proxy={
                "table_id": 0,
                "low": self.pg0._local_ip4_subnet,
                "hi": self.pg0._local_ip4_bcast,
            },
            is_add=1,
        )

        # Make pg2 un-numbered to pg0
        #
        self.pg2.set_unnumbered(self.pg0.sw_if_index)

        #
        # Enable pg2 for proxy ARP
        #
        self.pg2.set_proxy_arp()

        #
        # Send the ARP request with an originating address that
        # is VPP's own address
        #
        rx = self.send_and_expect(self.pg2, [arp_req_from_me], self.pg2)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            self.pg0.remote_hosts[1].ip4,
            self.pg0.local_ip4,
        )

        #
        # validate we have not learned an ARP entry as a result of this
        #
        self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg0.local_ip4))

        #
        # setup a punt redirect so packets from the uplink go to the tap
        #
        redirect = VppIpPuntRedirect(
            self, self.pg0.sw_if_index, self.pg2.sw_if_index, self.pg0.local_ip4
        )
        redirect.add_vpp_config()

        p_tcp = (
            Ether(
                src=self.pg0.remote_mac,
                dst=self.pg0.local_mac,
            )
            / IP(src=self.pg0.remote_ip4, dst=self.pg0.local_ip4)
            / TCP(sport=80, dport=80)
            / Raw()
        )
        rx = self.send_and_expect(self.pg0, [p_tcp], self.pg2)

        # there's no ARP entry so this is an ARP req
        self.assertTrue(rx[0].haslayer(ARP))

        # and ARP entry for VPP's pg0 address on the host interface
        n1 = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_mac,
            self.pg0.local_ip4,
            is_no_fib_entry=True,
        ).add_vpp_config()
        # now the packets shold forward
        rx = self.send_and_expect(self.pg0, [p_tcp], self.pg2)
        self.assertFalse(rx[0].haslayer(ARP))
        self.assertEqual(rx[0][Ether].dst, self.pg2.remote_mac)

        #
        # flush the neighbor cache on the uplink
        #
        af = VppEnum.vl_api_address_family_t
        self.vapi.ip_neighbor_flush(af.ADDRESS_IP4, self.pg0.sw_if_index)

        # ensure we can still resolve the ARPs on the uplink
        self.pg0.resolve_arp()

        self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_ip4))

        #
        # cleanup
        #
        self.vapi.proxy_arp_add_del(
            proxy={
                "table_id": 0,
                "low": self.pg0._local_ip4_subnet,
                "hi": self.pg0._local_ip4_bcast,
            },
            is_add=0,
        )
        redirect.remove_vpp_config()

    def test_proxy_arp(self):
        """Proxy ARP"""

        self.pg1.generate_remote_hosts(2)

        #
        # Proxy ARP request packets for each interface
        #
        arp_req_pg0 = Ether(src=self.pg0.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg0.remote_mac,
            pdst="10.10.10.3",
            psrc=self.pg0.remote_ip4,
        )
        arp_req_pg0_tagged = (
            Ether(src=self.pg0.remote_mac, dst="ff:ff:ff:ff:ff:ff")
            / Dot1Q(vlan=0)
            / ARP(
                op="who-has",
                hwsrc=self.pg0.remote_mac,
                pdst="10.10.10.3",
                psrc=self.pg0.remote_ip4,
            )
        )
        arp_req_pg1 = Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg1.remote_mac,
            pdst="10.10.10.3",
            psrc=self.pg1.remote_ip4,
        )
        arp_req_pg2 = Ether(src=self.pg2.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg2.remote_mac,
            pdst="10.10.10.3",
            psrc=self.pg1.remote_hosts[1].ip4,
        )
        arp_req_pg3 = Ether(src=self.pg3.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg3.remote_mac,
            pdst="10.10.10.3",
            psrc=self.pg3.remote_ip4,
        )

        #
        # Configure Proxy ARP for 10.10.10.0 -> 10.10.10.124
        #
        self.vapi.proxy_arp_add_del(
            proxy={"table_id": 0, "low": "10.10.10.2", "hi": "10.10.10.124"}, is_add=1
        )

        #
        # No responses are sent when the interfaces are not enabled for proxy
        # ARP
        #
        self.send_and_assert_no_replies(
            self.pg0, arp_req_pg0, "ARP req from unconfigured interface"
        )
        self.send_and_assert_no_replies(
            self.pg2, arp_req_pg2, "ARP req from unconfigured interface"
        )

        #
        # Make pg2 un-numbered to pg1
        #  still won't reply.
        #
        self.pg2.set_unnumbered(self.pg1.sw_if_index)

        self.send_and_assert_no_replies(
            self.pg2, arp_req_pg2, "ARP req from unnumbered interface"
        )

        #
        # Enable each interface to reply to proxy ARPs
        #
        for i in self.pg_interfaces:
            i.set_proxy_arp()

        #
        # Now each of the interfaces should reply to a request to a proxied
        # address
        #
        self.pg0.add_stream(arp_req_pg0)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg0.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg0.local_mac,
            self.pg0.remote_mac,
            "10.10.10.3",
            self.pg0.remote_ip4,
        )

        self.pg0.add_stream(arp_req_pg0_tagged)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg0.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg0.local_mac,
            self.pg0.remote_mac,
            "10.10.10.3",
            self.pg0.remote_ip4,
        )

        self.pg1.add_stream(arp_req_pg1)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg1.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg1.local_mac,
            self.pg1.remote_mac,
            "10.10.10.3",
            self.pg1.remote_ip4,
        )

        self.pg2.add_stream(arp_req_pg2)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_resp(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_mac,
            "10.10.10.3",
            self.pg1.remote_hosts[1].ip4,
        )

        #
        # A request for an address out of the configured range
        #
        arp_req_pg1_hi = Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg1.remote_mac,
            pdst="10.10.10.125",
            psrc=self.pg1.remote_ip4,
        )
        self.send_and_assert_no_replies(
            self.pg1, arp_req_pg1_hi, "ARP req out of range HI"
        )
        arp_req_pg1_low = Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(
            op="who-has",
            hwsrc=self.pg1.remote_mac,
            pdst="10.10.10.1",
            psrc=self.pg1.remote_ip4,
        )
        self.send_and_assert_no_replies(
            self.pg1, arp_req_pg1_low, "ARP req out of range Low"
        )

        #
        # Request for an address in the proxy range but from an interface
        # in a different VRF
        #
        self.send_and_assert_no_replies(
            self.pg3, arp_req_pg3, "ARP req from different VRF"
        )

        #
        # Disable Each interface for proxy ARP
        #  - expect none to respond
        #
        for i in self.pg_interfaces:
            i.set_proxy_arp(0)

        self.send_and_assert_no_replies(self.pg0, arp_req_pg0, "ARP req from disable")
        self.send_and_assert_no_replies(self.pg1, arp_req_pg1, "ARP req from disable")
        self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from disable")

        #
        # clean up on interface 2
        #
        self.pg2.unset_unnumbered(self.pg1.sw_if_index)

    def test_mpls(self):
        """MPLS"""

        #
        # Interface 2 does not yet have ip4 config
        #
        self.pg2.config_ip4()
        self.pg2.generate_remote_hosts(2)

        #
        # Add a route with out going label via an ARP unresolved next-hop
        #
        ip_10_0_0_1 = VppIpRoute(
            self,
            "10.0.0.1",
            32,
            [
                VppRoutePath(
                    self.pg2.remote_hosts[1].ip4, self.pg2.sw_if_index, labels=[55]
                )
            ],
        )
        ip_10_0_0_1.add_vpp_config()

        #
        # packets should generate an ARP request
        #
        p = (
            Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac)
            / IP(src=self.pg0.remote_ip4, dst="10.0.0.1")
            / UDP(sport=1234, dport=1234)
            / Raw(b"\xa5" * 100)
        )

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_arp_req(
            rx[0], self.pg2.local_mac, self.pg2.local_ip4, self.pg2._remote_hosts[1].ip4
        )

        #
        # now resolve the neighbours
        #
        self.pg2.configure_ipv4_neighbors()

        #
        # Now packet should be properly MPLS encapped.
        #  This verifies that MPLS link-type adjacencies are completed
        #  when the ARP entry resolves
        #
        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx = self.pg2.get_capture(1)
        self.verify_ip_o_mpls(
            rx[0],
            self.pg2.local_mac,
            self.pg2.remote_hosts[1].mac,
            55,
            self.pg0.remote_ip4,
            "10.0.0.1",
        )
        self.pg2.unconfig_ip4()

    def test_arp_vrrp(self):
        """ARP reply with VRRP virtual src hw addr"""

        #
        # IP packet destined for pg1 remote host arrives on pg0 resulting
        # in an ARP request for the address of the remote host on pg1
        #
        p0 = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        rx1 = self.send_and_expect(self.pg0, [p0], self.pg1)

        self.verify_arp_req(
            rx1[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_ip4
        )

        #
        # ARP reply for address of pg1 remote host arrives on pg1 with
        # the hw src addr set to a value in the VRRP IPv4 range of
        # MAC addresses
        #
        p1 = Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / ARP(
            op="is-at",
            hwdst=self.pg1.local_mac,
            hwsrc="00:00:5e:00:01:09",
            pdst=self.pg1.local_ip4,
            psrc=self.pg1.remote_ip4,
        )

        self.send_and_assert_no_replies(self.pg1, p1, "ARP reply")

        #
        # IP packet destined for pg1 remote host arrives on pg0 again.
        # VPP should have an ARP entry for that address now and the packet
        # should be sent out pg1.
        #
        rx1 = self.send_and_expect(self.pg0, [p0], self.pg1)

        self.verify_ip(
            rx1[0],
            self.pg1.local_mac,
            "00:00:5e:00:01:09",
            self.pg0.remote_ip4,
            self.pg1.remote_ip4,
        )

        self.pg1.admin_down()
        self.pg1.admin_up()

    def test_arp_duplicates(self):
        """ARP Duplicates"""

        #
        # Generate some hosts on the LAN
        #
        self.pg1.generate_remote_hosts(3)

        #
        # Add host 1 on pg1 and pg2
        #
        arp_pg1 = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[1].mac,
            self.pg1.remote_hosts[1].ip4,
        )
        arp_pg1.add_vpp_config()
        arp_pg2 = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_mac,
            self.pg1.remote_hosts[1].ip4,
        )
        arp_pg2.add_vpp_config()

        #
        # IP packet destined for pg1 remote host arrives on pg1 again.
        #
        p = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx1 = self.pg1.get_capture(1)

        self.verify_ip(
            rx1[0],
            self.pg1.local_mac,
            self.pg1.remote_hosts[1].mac,
            self.pg0.remote_ip4,
            self.pg1.remote_hosts[1].ip4,
        )

        #
        # remove the duplicate on pg1
        # packet stream should generate ARPs out of pg1
        #
        arp_pg1.remove_vpp_config()

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx1 = self.pg1.get_capture(1)

        self.verify_arp_req(
            rx1[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_hosts[1].ip4
        )

        #
        # Add it back
        #
        arp_pg1.add_vpp_config()

        self.pg0.add_stream(p)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        rx1 = self.pg1.get_capture(1)

        self.verify_ip(
            rx1[0],
            self.pg1.local_mac,
            self.pg1.remote_hosts[1].mac,
            self.pg0.remote_ip4,
            self.pg1.remote_hosts[1].ip4,
        )

    def test_arp_static(self):
        """ARP Static"""
        self.pg2.generate_remote_hosts(3)

        #
        # Add a static ARP entry
        #
        static_arp = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_hosts[1].mac,
            self.pg2.remote_hosts[1].ip4,
            is_static=1,
        )
        static_arp.add_vpp_config()

        #
        # Add the connected prefix to the interface
        #
        self.pg2.config_ip4()

        #
        # We should now find the adj-fib
        #
        self.assertTrue(
            find_nbr(
                self, self.pg2.sw_if_index, self.pg2.remote_hosts[1].ip4, is_static=1
            )
        )
        self.assertTrue(find_route(self, self.pg2.remote_hosts[1].ip4, 32))

        #
        # remove the connected
        #
        self.pg2.unconfig_ip4()

        #
        # put the interface into table 1
        #
        self.pg2.set_table_ip4(1)

        #
        # configure the same connected and expect to find the
        # adj fib in the new table
        #
        self.pg2.config_ip4()
        self.assertTrue(find_route(self, self.pg2.remote_hosts[1].ip4, 32, table_id=1))

        #
        # clean-up
        #
        self.pg2.unconfig_ip4()
        static_arp.remove_vpp_config()
        self.pg2.set_table_ip4(0)

    def test_arp_static_replace_dynamic_same_mac(self):
        """ARP Static can replace Dynamic (same mac)"""
        self.pg2.generate_remote_hosts(1)

        dyn_arp = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_hosts[0].mac,
            self.pg2.remote_hosts[0].ip4,
        )
        static_arp = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_hosts[0].mac,
            self.pg2.remote_hosts[0].ip4,
            is_static=1,
        )

        #
        # Add a dynamic ARP entry
        #
        dyn_arp.add_vpp_config()

        #
        # We should find the dynamic nbr
        #
        self.assertFalse(
            find_nbr(
                self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=1
            )
        )
        self.assertTrue(
            find_nbr(
                self,
                self.pg2.sw_if_index,
                self.pg2.remote_hosts[0].ip4,
                is_static=0,
                mac=self.pg2.remote_hosts[0].mac,
            )
        )

        #
        # Add a static ARP entry with the same mac
        #
        static_arp.add_vpp_config()

        #
        # We should now find the static nbr with the same mac
        #
        self.assertFalse(
            find_nbr(
                self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=0
            )
        )
        self.assertTrue(
            find_nbr(
                self,
                self.pg2.sw_if_index,
                self.pg2.remote_hosts[0].ip4,
                is_static=1,
                mac=self.pg2.remote_hosts[0].mac,
            )
        )

        #
        # clean-up
        #
        static_arp.remove_vpp_config()

    def test_arp_static_replace_dynamic_diff_mac(self):
        """ARP Static can replace Dynamic (diff mac)"""
        self.pg2.generate_remote_hosts(2)

        dyn_arp = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_hosts[0].mac,
            self.pg2.remote_hosts[0].ip4,
        )
        static_arp = VppNeighbor(
            self,
            self.pg2.sw_if_index,
            self.pg2.remote_hosts[1].mac,
            self.pg2.remote_hosts[0].ip4,
            is_static=1,
        )

        #
        # Add a dynamic ARP entry
        #
        dyn_arp.add_vpp_config()

        #
        # We should find the dynamic nbr
        #
        self.assertFalse(
            find_nbr(
                self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=1
            )
        )
        self.assertTrue(
            find_nbr(
                self,
                self.pg2.sw_if_index,
                self.pg2.remote_hosts[0].ip4,
                is_static=0,
                mac=self.pg2.remote_hosts[0].mac,
            )
        )

        #
        # Add a static ARP entry with a changed mac
        #
        static_arp.add_vpp_config()

        #
        # We should now find the static nbr with a changed mac
        #
        self.assertFalse(
            find_nbr(
                self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=0
            )
        )
        self.assertTrue(
            find_nbr(
                self,
                self.pg2.sw_if_index,
                self.pg2.remote_hosts[0].ip4,
                is_static=1,
                mac=self.pg2.remote_hosts[1].mac,
            )
        )

        #
        # clean-up
        #
        static_arp.remove_vpp_config()

    def test_arp_incomplete(self):
        """ARP Incomplete"""
        self.pg1.generate_remote_hosts(4)

        p0 = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )
        p1 = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[2].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )
        p2 = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst="1.1.1.1")
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        #
        # a packet to an unresolved destination generates an ARP request
        #
        rx = self.send_and_expect(self.pg0, [p0], self.pg1)
        self.verify_arp_req(
            rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4
        )

        #
        # add a neighbour for remote host 1
        #
        static_arp = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[1].mac,
            self.pg1.remote_hosts[1].ip4,
            is_static=1,
        )
        static_arp.add_vpp_config()

        #
        # add a route through remote host 3 hence we get an incomplete
        #
        VppIpRoute(
            self,
            "1.1.1.1",
            32,
            [VppRoutePath(self.pg1.remote_hosts[3].ip4, self.pg1.sw_if_index)],
        ).add_vpp_config()
        rx = self.send_and_expect(self.pg0, [p2], self.pg1)
        self.verify_arp_req(
            rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[3].ip4
        )

        #
        # change the interface's MAC
        #
        self.vapi.sw_interface_set_mac_address(
            self.pg1.sw_if_index, "00:00:00:33:33:33"
        )

        #
        # now ARP requests come from the new source mac
        #
        rx = self.send_and_expect(self.pg0, [p1], self.pg1)
        self.verify_arp_req(
            rx[0],
            "00:00:00:33:33:33",
            self.pg1.local_ip4,
            self.pg1._remote_hosts[2].ip4,
        )
        rx = self.send_and_expect(self.pg0, [p2], self.pg1)
        self.verify_arp_req(
            rx[0],
            "00:00:00:33:33:33",
            self.pg1.local_ip4,
            self.pg1._remote_hosts[3].ip4,
        )

        #
        # packets to the resolved host also have the new source mac
        #
        rx = self.send_and_expect(self.pg0, [p0], self.pg1)
        self.verify_ip(
            rx[0],
            "00:00:00:33:33:33",
            self.pg1.remote_hosts[1].mac,
            self.pg0.remote_ip4,
            self.pg1.remote_hosts[1].ip4,
        )

        #
        # set the mac address on the interface that does not have a
        # configured subnet and thus no glean
        #
        self.vapi.sw_interface_set_mac_address(
            self.pg2.sw_if_index, "00:00:00:33:33:33"
        )

    def test_garp(self):
        """GARP"""

        #
        # Generate some hosts on the LAN
        #
        self.pg1.generate_remote_hosts(4)
        self.pg2.generate_remote_hosts(4)

        #
        # And an ARP entry
        #
        arp = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[1].mac,
            self.pg1.remote_hosts[1].ip4,
        )
        arp.add_vpp_config()

        self.assertTrue(
            find_nbr(
                self,
                self.pg1.sw_if_index,
                self.pg1.remote_hosts[1].ip4,
                mac=self.pg1.remote_hosts[1].mac,
            )
        )

        #
        # Send a GARP (request) to swap the host 1's address to that of host 2
        #
        p1 = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[2].mac) / ARP(
            op="who-has",
            hwdst=self.pg1.local_mac,
            hwsrc=self.pg1.remote_hosts[2].mac,
            pdst=self.pg1.remote_hosts[1].ip4,
            psrc=self.pg1.remote_hosts[1].ip4,
        )

        self.pg1.add_stream(p1)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        self.assertTrue(
            find_nbr(
                self,
                self.pg1.sw_if_index,
                self.pg1.remote_hosts[1].ip4,
                mac=self.pg1.remote_hosts[2].mac,
            )
        )
        self.assert_equal(self.get_arp_rx_garp(self.pg1), 1)

        #
        # Send a GARP (reply) to swap the host 1's address to that of host 3
        #
        p1 = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(
            op="is-at",
            hwdst=self.pg1.local_mac,
            hwsrc=self.pg1.remote_hosts[3].mac,
            pdst=self.pg1.remote_hosts[1].ip4,
            psrc=self.pg1.remote_hosts[1].ip4,
        )

        self.pg1.add_stream(p1)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        self.assertTrue(
            find_nbr(
                self,
                self.pg1.sw_if_index,
                self.pg1.remote_hosts[1].ip4,
                mac=self.pg1.remote_hosts[3].mac,
            )
        )
        self.assert_equal(self.get_arp_rx_garp(self.pg1), 2)

        #
        # GARPs (request nor replies) for host we don't know yet
        # don't result in new neighbour entries
        #
        p1 = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(
            op="who-has",
            hwdst=self.pg1.local_mac,
            hwsrc=self.pg1.remote_hosts[3].mac,
            pdst=self.pg1.remote_hosts[2].ip4,
            psrc=self.pg1.remote_hosts[2].ip4,
        )

        self.pg1.add_stream(p1)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        self.assertFalse(
            find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].ip4)
        )

        p1 = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(
            op="is-at",
            hwdst=self.pg1.local_mac,
            hwsrc=self.pg1.remote_hosts[3].mac,
            pdst=self.pg1.remote_hosts[2].ip4,
            psrc=self.pg1.remote_hosts[2].ip4,
        )

        self.pg1.add_stream(p1)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()

        self.assertFalse(
            find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].ip4)
        )

        #
        # IP address in different subnets are not learnt
        #
        self.pg2.configure_ipv4_neighbors()

        cntr = self.statistics.get_err_counter(
            "/err/arp-reply/l3_dst_address_not_local"
        )

        for op in ["is-at", "who-has"]:
            p1 = [
                (
                    Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_hosts[1].mac)
                    / ARP(
                        op=op,
                        hwdst=self.pg2.local_mac,
                        hwsrc=self.pg2.remote_hosts[1].mac,
                        pdst=self.pg2.remote_hosts[1].ip4,
                        psrc=self.pg2.remote_hosts[1].ip4,
                    )
                ),
                (
                    Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_hosts[1].mac)
                    / ARP(
                        op=op,
                        hwdst="ff:ff:ff:ff:ff:ff",
                        hwsrc=self.pg2.remote_hosts[1].mac,
                        pdst=self.pg2.remote_hosts[1].ip4,
                        psrc=self.pg2.remote_hosts[1].ip4,
                    )
                ),
            ]

            self.send_and_assert_no_replies(self.pg1, p1)
            self.assertFalse(
                find_nbr(self, self.pg1.sw_if_index, self.pg2.remote_hosts[1].ip4)
            )

        # they are all dropped because the subnet's don't match
        self.assertEqual(
            cntr + 4,
            self.statistics.get_err_counter("/err/arp-reply/l3_dst_address_not_local"),
        )

    def test_arp_incomplete2(self):
        """Incomplete Entries"""

        #
        # ensure that we throttle the ARP and ND requests
        #
        self.pg0.generate_remote_hosts(2)

        #
        # IPv4/ARP
        #
        ip_10_0_0_1 = VppIpRoute(
            self,
            "10.0.0.1",
            32,
            [VppRoutePath(self.pg0.remote_hosts[1].ip4, self.pg0.sw_if_index)],
        )
        ip_10_0_0_1.add_vpp_config()

        p1 = (
            Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac)
            / IP(src=self.pg1.remote_ip4, dst="10.0.0.1")
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg1.add_stream(p1 * 257)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()
        rx = self.pg0._get_capture(1)

        #
        # how many we get is going to be dependent on the time for packet
        # processing but it should be small
        #
        self.assertLess(len(rx), 64)

        #
        # IPv6/ND
        #
        ip_10_1 = VppIpRoute(
            self,
            "10::1",
            128,
            [
                VppRoutePath(
                    self.pg0.remote_hosts[1].ip6,
                    self.pg0.sw_if_index,
                    proto=DpoProto.DPO_PROTO_IP6,
                )
            ],
        )
        ip_10_1.add_vpp_config()

        p1 = (
            Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac)
            / IPv6(src=self.pg1.remote_ip6, dst="10::1")
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        self.pg1.add_stream(p1 * 257)
        self.pg_enable_capture(self.pg_interfaces)
        self.pg_start()
        rx = self.pg0._get_capture(1)

        #
        # how many we get is going to be dependent on the time for packet
        # processing but it should be small
        #
        self.assertLess(len(rx), 64)

    def test_arp_forus(self):
        """ARP for for-us"""

        #
        # Test that VPP responds with ARP requests to addresses that
        # are connected and local routes.
        # Use one of the 'remote' addresses in the subnet as a local address
        # The intention of this route is that it then acts like a secondary
        # address added to an interface
        #
        self.pg0.generate_remote_hosts(2)

        forus = VppIpRoute(
            self,
            self.pg0.remote_hosts[1].ip4,
            32,
            [
                VppRoutePath(
                    "0.0.0.0",
                    self.pg0.sw_if_index,
                    type=FibPathType.FIB_PATH_TYPE_LOCAL,
                )
            ],
        )
        forus.add_vpp_config()

        p = Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(
            op="who-has",
            hwdst=self.pg0.local_mac,
            hwsrc=self.pg0.remote_mac,
            pdst=self.pg0.remote_hosts[1].ip4,
            psrc=self.pg0.remote_ip4,
        )

        rx = self.send_and_expect(self.pg0, [p], self.pg0)

        self.verify_arp_resp(
            rx[0],
            self.pg0.local_mac,
            self.pg0.remote_mac,
            self.pg0.remote_hosts[1].ip4,
            self.pg0.remote_ip4,
        )

    def test_arp_table_swap(self):
        #
        # Generate some hosts on the LAN
        #
        N_NBRS = 4
        self.pg1.generate_remote_hosts(N_NBRS)

        for n in range(N_NBRS):
            # a route thru each neighbour
            VppIpRoute(
                self,
                "10.0.0.%d" % n,
                32,
                [VppRoutePath(self.pg1.remote_hosts[n].ip4, self.pg1.sw_if_index)],
            ).add_vpp_config()

            # resolve each neighbour
            p1 = Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / ARP(
                op="is-at",
                hwdst=self.pg1.local_mac,
                hwsrc="00:00:5e:00:01:09",
                pdst=self.pg1.local_ip4,
                psrc=self.pg1.remote_hosts[n].ip4,
            )

            self.send_and_assert_no_replies(self.pg1, p1, "ARP reply")

        self.logger.info(self.vapi.cli("sh ip neighbors"))

        #
        # swap the table pg1 is in
        #
        table = VppIpTable(self, 100).add_vpp_config()

        self.pg1.unconfig_ip4()
        self.pg1.set_table_ip4(100)
        self.pg1.config_ip4()

        #
        # all neighbours are cleared
        #
        for n in range(N_NBRS):
            self.assertFalse(
                find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip4)
            )

        #
        # packets to all neighbours generate ARP requests
        #
        for n in range(N_NBRS):
            # a route thru each neighbour
            VppIpRoute(
                self,
                "10.0.0.%d" % n,
                32,
                [VppRoutePath(self.pg1.remote_hosts[n].ip4, self.pg1.sw_if_index)],
                table_id=100,
            ).add_vpp_config()

            p = (
                Ether(src=self.pg1.remote_hosts[n].mac, dst=self.pg1.local_mac)
                / IP(src=self.pg1.remote_hosts[n].ip4, dst="10.0.0.%d" % n)
                / Raw(b"0x5" * 100)
            )
            rxs = self.send_and_expect(self.pg1, [p], self.pg1)
            for rx in rxs:
                self.verify_arp_req(
                    rx,
                    self.pg1.local_mac,
                    self.pg1.local_ip4,
                    self.pg1.remote_hosts[n].ip4,
                )

        self.pg1.unconfig_ip4()
        self.pg1.set_table_ip4(0)

    def test_glean_src_select(self):
        """Multi Connecteds"""

        #
        # configure multiple connected subnets on an interface
        # and ensure that ARP requests for hosts on those subnets
        # pick up the correct source address
        #
        conn1 = VppIpInterfaceAddress(self, self.pg1, "10.0.0.1", 24).add_vpp_config()
        conn2 = VppIpInterfaceAddress(self, self.pg1, "10.0.1.1", 24).add_vpp_config()

        p1 = (
            Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac)
            / IP(src=self.pg1.remote_ip4, dst="10.0.0.128")
            / Raw(b"0x5" * 100)
        )

        rxs = self.send_and_expect(self.pg0, [p1], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.0.1", "10.0.0.128")

        p2 = (
            Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac)
            / IP(src=self.pg1.remote_ip4, dst="10.0.1.128")
            / Raw(b"0x5" * 100)
        )

        rxs = self.send_and_expect(self.pg0, [p2], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.1", "10.0.1.128")

        #
        # add a local address in the same subnet
        #  the source addresses are equivalent. VPP happens to
        #  choose the last one that was added
        conn3 = VppIpInterfaceAddress(self, self.pg1, "10.0.1.2", 24).add_vpp_config()

        rxs = self.send_and_expect(self.pg0, [p2], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128")

        #
        # remove
        #
        conn3.remove_vpp_config()
        rxs = self.send_and_expect(self.pg0, [p2], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.1", "10.0.1.128")

        #
        # add back, this time remove the first one
        #
        conn3 = VppIpInterfaceAddress(self, self.pg1, "10.0.1.2", 24).add_vpp_config()

        rxs = self.send_and_expect(self.pg0, [p2], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128")

        conn1.remove_vpp_config()
        rxs = self.send_and_expect(self.pg0, [p2], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128")

        # apply a connected prefix to an interface in a different table
        VppIpRoute(
            self,
            "10.0.1.0",
            24,
            [VppRoutePath("0.0.0.0", self.pg1.sw_if_index)],
            table_id=1,
        ).add_vpp_config()

        rxs = self.send_and_expect(self.pg3, [p2], self.pg1)
        for rx in rxs:
            self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128")

        # cleanup
        conn3.remove_vpp_config()
        conn2.remove_vpp_config()


@tag_fixme_vpp_workers
class NeighborStatsTestCase(VppTestCase):
    """ARP/ND Counters"""

    @classmethod
    def setUpClass(cls):
        super(NeighborStatsTestCase, cls).setUpClass()

    @classmethod
    def tearDownClass(cls):
        super(NeighborStatsTestCase, cls).tearDownClass()

    def setUp(self):
        super(NeighborStatsTestCase, self).setUp()

        self.create_pg_interfaces(range(2))

        # pg0 configured with ip4 and 6 addresses used for input
        # pg1 configured with ip4 and 6 addresses used for output
        # pg2 is unnumbered to pg0
        for i in self.pg_interfaces:
            i.admin_up()
            i.config_ip4()
            i.config_ip6()
            i.resolve_arp()
            i.resolve_ndp()

    def tearDown(self):
        super(NeighborStatsTestCase, self).tearDown()

        for i in self.pg_interfaces:
            i.unconfig_ip4()
            i.unconfig_ip6()
            i.admin_down()

    def test_arp_stats(self):
        """ARP Counters"""

        self.vapi.cli("adj counters enable")
        self.pg1.generate_remote_hosts(2)

        arp1 = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[0].mac,
            self.pg1.remote_hosts[0].ip4,
        )
        arp1.add_vpp_config()
        arp2 = VppNeighbor(
            self,
            self.pg1.sw_if_index,
            self.pg1.remote_hosts[1].mac,
            self.pg1.remote_hosts[1].ip4,
        )
        arp2.add_vpp_config()

        p1 = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[0].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )
        p2 = (
            Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac)
            / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        rx = self.send_and_expect(self.pg0, p1 * NUM_PKTS, self.pg1)
        rx = self.send_and_expect(self.pg0, p2 * NUM_PKTS, self.pg1)

        self.assertEqual(NUM_PKTS, arp1.get_stats()["packets"])
        self.assertEqual(NUM_PKTS, arp2.get_stats()["packets"])

        rx = self.send_and_expect(self.pg0, p1 * NUM_PKTS, self.pg1)
        self.assertEqual(NUM_PKTS * 2, arp1.get_stats()["packets"])

    def test_nd_stats(self):
        """ND Counters"""

        self.vapi.cli("adj counters enable")
        self.pg0.generate_remote_hosts(3)

        nd1 = VppNeighbor(
            self,
            self.pg0.sw_if_index,
            self.pg0.remote_hosts[1].mac,
            self.pg0.remote_hosts[1].ip6,
        )
        nd1.add_vpp_config()
        nd2 = VppNeighbor(
            self,
            self.pg0.sw_if_index,
            self.pg0.remote_hosts[2].mac,
            self.pg0.remote_hosts[2].ip6,
        )
        nd2.add_vpp_config()

        p1 = (
            Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac)
            / IPv6(src=self.pg1.remote_ip6, dst=self.pg0.remote_hosts[1].ip6)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )
        p2 = (
            Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac)
            / IPv6(src=self.pg1.remote_ip6, dst=self.pg0.remote_hosts[2].ip6)
            / UDP(sport=1234, dport=1234)
            / Raw()
        )

        rx = self.send_and_expect(self.pg1, p1 * 16, self.pg0)
        rx = self.send_and_expect(self.pg1, p2 * 16, self.pg0)

        self.assertEqual(16, nd1.get_stats()["packets"])
        self.assertEqual(16, nd2.get_stats()["packets"])

        rx = self.send_and_expect(self.pg1, p1 * NUM_PKTS, self.pg0)
        self.assertEqual(NUM_PKTS + 16, nd1.get_stats()["packets"])


@tag_fixme_ubuntu2204
class NeighborAgeTestCase(VppTestCase):
    """ARP/ND Aging"""

    @classmethod
    def setUpClass(cls):
        super(NeighborAgeTestCase, cls).setUpClass()

    @classmethod
    def tearDownClass(cls):
        super(NeighborAgeTestCase, cls).tearDownClass()

    def setUp(self):
        super(NeighborAgeTestCase, self).setUp()

        self.create_pg_interfaces(range(1))

        # pg0 configured with ip4 and 6 addresses used for input
        # pg1 configured with ip4 and 6 addresses used for output
        # pg2 is unnumbered to pg0
        for i in self.pg_interfaces:
            i.admin_up()
            i.config_ip4()
            i.config_ip6()
            i.resolve_arp()
            i.resolve_ndp()

    def tearDown(self):
        super(NeighborAgeTestCase, self).tearDown()

        for i in self.pg_interfaces:
            i.unconfig_ip4()
            i.unconfig_ip6()
            i.admin_down()

    def verify_arp_req(self, rx, smac, sip, dip):
        ether = rx[Ether]
        self.assertEqual(ether.dst, "ff:ff:ff:ff:ff:ff")
        self.assertEqual(ether.src, smac)

        arp = rx[ARP]
        self.assertEqual(arp.hwtype, 1)
        self.assertEqual(arp.ptype, 0x800)
        self.assertEqual(arp.hwlen, 6)
        self.assertEqual(arp.plen, 4)
        self.assertEqual(arp.op, arp_opts["who-has"])
        self.assertEqual(arp.hwsrc, smac)
        self.assertEqual(arp.hwdst, "00:00:00:00:00:00")
        self.assertEqual(arp.psrc, sip)
        self.assertEqual(arp.pdst, dip)

    def test_age(self):
        """Aging/Recycle"""

        self.vapi.cli("set logging unthrottle 0")
        self.vapi.cli("set logging size %d" % 0xFFFF)

        self.pg0.generate_remote_hosts(201)

        vaf = VppEnum.vl_api_address_family_t

        #
        # start listening on all interfaces
        #
        self.pg_enable_capture(self.pg_interfaces)

        #
        # Set the neighbor configuration:
        #   limi = 200
        #   age  = 0 seconds
        #   recycle = false
        #
        self.vapi.ip_neighbor_config(
            af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=False
        )

        self.vapi.cli("sh ip neighbor-config")

        # add the 198 neighbours that should pass (-1 for one created in setup)
        for ii in range(200):
            VppNeighbor(
                self,
                self.pg0.sw_if_index,
                self.pg0.remote_hosts[ii].mac,
                self.pg0.remote_hosts[ii].ip4,
            ).add_vpp_config()

        # one more neighbor over the limit should fail
        with self.vapi.assert_negative_api_retval():
            VppNeighbor(
                self,
                self.pg0.sw_if_index,
                self.pg0.remote_hosts[200].mac,
                self.pg0.remote_hosts[200].ip4,
            ).add_vpp_config()

        #
        # change the config to allow recycling the old neighbors
        #
        self.vapi.ip_neighbor_config(
            af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=True
        )

        # now new additions are allowed
        VppNeighbor(
            self,
            self.pg0.sw_if_index,
            self.pg0.remote_hosts[200].mac,
            self.pg0.remote_hosts[200].ip4,
        ).add_vpp_config()

        # add the first neighbor we configured has been re-used
        self.assertFalse(
            find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[0].ip4)
        )
        self.assertTrue(
            find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].ip4)
        )

        #
        # change the config to age old neighbors
        #
        self.vapi.ip_neighbor_config(
            af=vaf.ADDRESS_IP4, max_number=200, max_age=2, recycle=True
        )

        self.vapi.cli("sh ip4 neighbor-sorted")

        # age out neighbors
        self.virtual_sleep(3)

        #
        # expect probes from all these ARP entries as they age
        # 3 probes for each neighbor 3*200 = 600
        rxs = self.pg0.get_capture(600, timeout=2)

        for ii in range(3):
            for jj in range(200):
                rx = rxs[ii * 200 + jj]
                # rx.show()

        #
        # 3 probes sent then 1 more second to see if a reply comes, before
        # they age out
        #
        self.virtual_sleep(1)

        self.assertFalse(
            self.vapi.ip_neighbor_dump(sw_if_index=0xFFFFFFFF, af=vaf.ADDRESS_IP4)
        )

        #
        # load up some neighbours again with 2s aging enabled
        # they should be removed after 10s (2s age + 4s for probes + gap)
        # check for the add and remove events
        #
        enum = VppEnum.vl_api_ip_neighbor_event_flags_t

        self.vapi.want_ip_neighbor_events_v2(enable=1)
        for ii in range(10):
            VppNeighbor(
                self,
                self.pg0.sw_if_index,
                self.pg0.remote_hosts[ii].mac,
                self.pg0.remote_hosts[ii].ip4,
            ).add_vpp_config()

            e = self.vapi.wait_for_event(1, "ip_neighbor_event_v2")
            self.assertEqual(e.flags, enum.IP_NEIGHBOR_API_EVENT_FLAG_ADDED)
            self.assertEqual(str(e.neighbor.ip_address), self.pg0.remote_hosts[ii].ip4)
            self.assertEqual(e.neighbor.mac_address, self.pg0.remote_hosts[ii].mac)

        self.virtual_sleep(10)
        self.assertFalse(
            self.vapi.ip_neighbor_dump(sw_if_index=0xFFFFFFFF, af=vaf.ADDRESS_IP4)
        )

        evs = []
        for ii in range(10):
            e = self.vapi.wait_for_event(1, "ip_neighbor_event_v2")
            self.assertEqual(e.flags, enum.IP_NEIGHBOR_API_EVENT_FLAG_REMOVED)
            evs.append(e)

        # check we got the correct mac/ip pairs - done separately
        # because we don't care about the order the remove notifications
        # arrive
        for ii in range(10):
            found = False
            mac = self.pg0.remote_hosts[ii].mac
            ip = self.pg0.remote_hosts[ii].ip4

            for e in evs:
                if e.neighbor.mac_address == mac and str(e.neighbor.ip_address) == ip:
                    found = True
                    break
            self.assertTrue(found)

        #
        # check if we can set age and recycle with empty neighbor list
        #
        self.vapi.ip_neighbor_config(
            af=vaf.ADDRESS_IP4, max_number=200, max_age=1000, recycle=True
        )

        #
        # load up some neighbours again, then disable the aging
        # they should still be there in 10 seconds time
        #
        for ii in range(10):
            VppNeighbor(
                self,
                self.pg0.sw_if_index,
                self.pg0.remote_hosts[ii].mac,
                self.pg0.remote_hosts[ii].ip4,
            ).add_vpp_config()
        self.vapi.ip_neighbor_config(
            af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=False
        )

        self.virtual_sleep(10)
        self.assertTrue(
            find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[0].ip4)
        )


class NeighborReplaceTestCase(VppTestCase):
    """ARP/ND Replacement"""

    @classmethod
    def setUpClass(cls):
        super(NeighborReplaceTestCase, cls).setUpClass()

    @classmethod
    def tearDownClass(cls):
        super(NeighborReplaceTestCase, cls).tearDownClass()

    def setUp(self):
        super(NeighborReplaceTestCase, self).setUp()

        self.create_pg_interfaces(range(4))

        # pg0 configured with ip4 and 6 addresses used for input
        # pg1 configured with ip4 and 6 addresses used for output
        # pg2 is unnumbered to pg0
        for i in self.pg_interfaces:
            i.admin_up()
            i.config_ip4()
            i.config_ip6()
            i.resolve_arp()
            i.resolve_ndp()

    def tearDown(self):
        super(NeighborReplaceTestCase, self).tearDown()

        for i in self.pg_interfaces:
            i.unconfig_ip4()
            i.unconfig_ip6()
            i.admin_down()

    def test_replace(self):
        """replace"""

        N_HOSTS = 16

        for i in self.pg_interfaces:
            i.generate_remote_hosts(N_HOSTS)
            i.configure_ipv4_neighbors()
            i.configure_ipv6_neighbors()

        # replace them all
        self.vapi.ip_neighbor_replace_begin()
        self.vapi.ip_neighbor_replace_end()

        for i in self.pg_interfaces:
            for h in range(N_HOSTS):
                self.assertFalse(
                    find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[h].ip4)
                )
                self.assertFalse(
                    find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[h].ip6)
                )

        #
        # and them all back via the API
        #
        for i in self.pg_interfaces:
            for h in range(N_HOSTS):
                VppNeighbor(
                    self, i.sw_if_index, i.remote_hosts[h].mac, i.remote_hosts[h].ip4
                ).add_vpp_config()
                VppNeighbor(
                    self, i.sw_if_index, i.remote_hosts[h].mac, i.remote_hosts[h].ip6
                ).add_vpp_config()

        #
        # begin the replacement again, this time touch some
        # the neighbours on pg1 so they are not deleted
        #
        self.vapi.ip_neighbor_replace_begin()

        # update from the API all neighbours on pg1
        for h in range(N_HOSTS):
            VppNeighbor(
                self,
                self.pg1.sw_if_index,
                self.pg1.remote_hosts[h].mac,
                self.pg1.remote_hosts[h].ip4,
            ).add_vpp_config()
            VppNeighbor(
                self,
                self.pg1.sw_if_index,
                self.pg1.remote_hosts[h].mac,
                self.pg1.remote_hosts[h].ip6,
            ).add_vpp_config()

        # update from the data-plane all neighbours on pg3
        self.pg3.configure_ipv4_neighbors()
        self.pg3.configure_ipv6_neighbors()

        # complete the replacement
        self.logger.info(self.vapi.cli("sh ip neighbors"))
        self.vapi.ip_neighbor_replace_end()

        for i in self.pg_interfaces:
            if i == self.pg1 or i == self.pg3:
                # neighbours on pg1 and pg3 are still present
                for h in range(N_HOSTS):
                    self.assertTrue(
                        find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip4)
                    )
                    self.assertTrue(
                        find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip6)
                    )
            else:
                # all other neighbours are toast
                for h in range(N_HOSTS):
                    self.assertFalse(
                        find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip4)
                    )
                    self.assertFalse(
                        find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip6)
                    )


class NeighborFlush(VppTestCase):
    """Neighbor Flush"""

    @classmethod
    def setUpClass(cls):
        super(NeighborFlush, cls).setUpClass()

    @classmethod
    def tearDownClass(cls):
        super(NeighborFlush, cls).tearDownClass()

    def setUp(self):
        super(NeighborFlush, self).setUp()

        self.create_pg_interfaces(range(2))

        for i in self.pg_interfaces:
            i.admin_up()
            i.config_ip4()
            i.config_ip6()
            i.resolve_arp()
            i.resolve_ndp()

    def tearDown(self):
        super(NeighborFlush, self).tearDown()

        for i in self.pg_interfaces:
            i.unconfig_ip4()
            i.unconfig_ip6()
            i.admin_down()

    def test_flush(self):
        """Neighbour Flush"""

        e = VppEnum
        nf = e.vl_api_ip_neighbor_flags_t
        af = e.vl_api_address_family_t
        N_HOSTS = 16
        static = [False, True]
        self.pg0.generate_remote_hosts(N_HOSTS)
        self.pg1.generate_remote_hosts(N_HOSTS)

        for s in static:
            # a few v4 and v6 dynamic neoghbors
            for n in range(N_HOSTS):
                VppNeighbor(
                    self,
                    self.pg0.sw_if_index,
                    self.pg0.remote_hosts[n].mac,
                    self.pg0.remote_hosts[n].ip4,
                    is_static=s,
                ).add_vpp_config()
                VppNeighbor(
                    self,
                    self.pg1.sw_if_index,
                    self.pg1.remote_hosts[n].mac,
                    self.pg1.remote_hosts[n].ip6,
                    is_static=s,
                ).add_vpp_config()

            # flush the interfaces individually
            self.vapi.ip_neighbor_flush(af.ADDRESS_IP4, self.pg0.sw_if_index)

            # check we haven't flushed that which we shouldn't
            for n in range(N_HOSTS):
                self.assertTrue(
                    find_nbr(
                        self,
                        self.pg1.sw_if_index,
                        self.pg1.remote_hosts[n].ip6,
                        is_static=s,
                    )
                )

            self.vapi.ip_neighbor_flush(af.ADDRESS_IP6, self.pg1.sw_if_index)

            for n in range(N_HOSTS):
                self.assertFalse(
                    find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].ip4)
                )
                self.assertFalse(
                    find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip6)
                )

            # add the nieghbours back
            for n in range(N_HOSTS):
                VppNeighbor(
                    self,
                    self.pg0.sw_if_index,
                    self.pg0.remote_hosts[n].mac,
                    self.pg0.remote_hosts[n].ip4,
                    is_static=s,
                ).add_vpp_config()
                VppNeighbor(
                    self,
                    self.pg1.sw_if_index,
                    self.pg1.remote_hosts[n].mac,
                    self.pg1.remote_hosts[n].ip6,
                    is_static=s,
                ).add_vpp_config()

            self.logger.info(self.vapi.cli("sh ip neighbor"))

            # flush both interfaces at the same time
            self.vapi.ip_neighbor_flush(af.ADDRESS_IP6, 0xFFFFFFFF)

            # check we haven't flushed that which we shouldn't
            for n in range(N_HOSTS):
                self.assertTrue(
                    find_nbr(
                        self,
                        self.pg0.sw_if_index,
                        self.pg0.remote_hosts[n].ip4,
                        is_static=s,
                    )
                )

            self.vapi.ip_neighbor_flush(af.ADDRESS_IP4, 0xFFFFFFFF)

            for n in range(N_HOSTS):
                self.assertFalse(
                    find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].ip4)
                )
                self.assertFalse(
                    find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip6)
                )


if __name__ == "__main__":
    unittest.main(testRunner=VppTestRunner)