summaryrefslogtreecommitdiffstats
path: root/src/vppinfra/ptclosure.c
blob: 2635e59adc76c5f567ae84ace71bf39592f17093 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*
 * Copyright (c) 2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <vppinfra/ptclosure.h>

__clib_export u8 **
clib_ptclosure_alloc (int n)
{
  u8 **rv = 0;
  u8 *row;
  int i;

  ASSERT (n > 0);

  vec_validate (rv, n - 1);
  for (i = 0; i < n; i++)
    {
      row = 0;
      vec_validate (row, n - 1);

      rv[i] = row;
    }
  return rv;
}

__clib_export void
clib_ptclosure_free (u8 ** ptc)
{
  u8 *row;
  int n = vec_len (ptc);
  int i;

  ASSERT (n > 0);

  for (i = 0; i < n; i++)
    {
      row = ptc[i];
      vec_free (row);
    }
  vec_free (ptc);
}

void
clib_ptclosure_copy (u8 ** dst, u8 ** src)
{
  int i, n;
  u8 *src_row, *dst_row;

  n = vec_len (dst);

  for (i = 0; i < vec_len (dst); i++)
    {
      src_row = src[i];
      dst_row = dst[i];
      clib_memcpy (dst_row, src_row, n);
    }
}

/*
 * compute the positive transitive closure
 * of a relation via Warshall's algorithm.
 *
 * Ref:
 * Warshall, Stephen (January 1962). "A theorem on Boolean matrices".
 * Journal of the ACM 9 (1): 11–12.
 *
 * foo[i][j] = 1 means that item i
 * "bears the relation" to item j.
 *
 * For example: "item i must be before item j"
 *
 * You could use a bitmap, but since the algorithm is
 * O(n**3) in the first place, large N is inadvisable...
 *
 */

__clib_export u8 **
clib_ptclosure (u8 ** orig)
{
  int i, j, k;
  int n;
  u8 **prev, **cur;

  n = vec_len (orig);
  prev = clib_ptclosure_alloc (n);
  cur = clib_ptclosure_alloc (n);

  clib_ptclosure_copy (prev, orig);

  for (k = 0; k < n; k++)
    {
      for (i = 0; i < n; i++)
	{
	  for (j = 0; j < n; j++)
	    {
	      cur[i][j] = prev[i][j] || (prev[i][k] && prev[k][j]);
	    }
	}
      clib_ptclosure_copy (prev, cur);
    }
  clib_ptclosure_free (prev);
  return cur;
}



/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
">scapy.layers.inet6 import IPv6, IPv6ExtHdrFragment, IPv6ExtHdrRouting,\ IPv6ExtHdrHopByHop from scapy.packet import Raw from scapy.utils import hexdump from scapy.utils6 import in6_mactoifaceid from io import BytesIO from vpp_papi import mac_pton def ppp(headline, packet): """ Return string containing the output of scapy packet.show() call. """ return '%s\n%s\n\n%s\n' % (headline, hexdump(packet, dump=True), packet.show(dump=True)) def ppc(headline, capture, limit=10): """ Return string containing ppp() printout for a capture. :param headline: printed as first line of output :param capture: packets to print :param limit: limit the print to # of packets """ if not capture: return headline tail = "" if limit < len(capture): tail = "\nPrint limit reached, %s out of %s packets printed" % ( limit, len(capture)) body = "".join([ppp("Packet #%s:" % count, p) for count, p in zip(range(0, limit), capture)]) return "%s\n%s%s" % (headline, body, tail) def ip4_range(ip4, s, e): tmp = ip4.rsplit('.', 1)[0] return ("%s.%d" % (tmp, i) for i in range(s, e)) def ip4n_range(ip4n, s, e): ip4 = socket.inet_ntop(socket.AF_INET, ip4n) return (socket.inet_pton(socket.AF_INET, ip) for ip in ip4_range(ip4, s, e)) # wrapper around scapy library function. def mk_ll_addr(mac): euid = in6_mactoifaceid(str(mac)) addr = "fe80::" + euid return addr def ip6_normalize(ip6): return socket.inet_ntop(socket.AF_INET6, socket.inet_pton(socket.AF_INET6, ip6)) def get_core_path(tempdir): return "%s/%s" % (tempdir, get_core_pattern()) def is_core_present(tempdir): return os.path.isfile(get_core_path(tempdir)) def get_core_pattern(): with open("/proc/sys/kernel/core_pattern", "r") as f: corefmt = f.read().strip() return corefmt def check_core_path(logger, core_path): corefmt = get_core_pattern() if corefmt.startswith("|"): logger.error( "WARNING: redirecting the core dump through a" " filter may result in truncated dumps.") logger.error( " You may want to check the filter settings" " or uninstall it and edit the" " /proc/sys/kernel/core_pattern accordingly.") logger.error( " current core pattern is: %s" % corefmt) class NumericConstant(object): desc_dict = {} def __init__(self, value): self._value = value def __int__(self): return self._value def __long__(self): return self._value def __str__(self): if self._value in self.desc_dict: return self.desc_dict[self._value] return "" class Host(object): """ Generic test host "connected" to VPPs interface. """ @property def mac(self): """ MAC address """ return self._mac @property def bin_mac(self): """ MAC address """ return mac_pton(self._mac) @property def ip4(self): """ IPv4 address - string """ return self._ip4 @property def ip4n(self): """ IPv4 address of remote host - raw, suitable as API parameter.""" return socket.inet_pton(socket.AF_INET, self._ip4) @property def ip6(self): """ IPv6 address - string """ return self._ip6 @property def ip6n(self): """ IPv6 address of remote host - raw, suitable as API parameter.""" return socket.inet_pton(socket.AF_INET6, self._ip6) @property def ip6_ll(self): """ IPv6 link-local address - string """ return self._ip6_ll @property def ip6n_ll(self): """ IPv6 link-local address of remote host - raw, suitable as API parameter.""" return socket.inet_pton(socket.AF_INET6, self._ip6_ll) def __eq__(self, other): if isinstance(other, Host): return (self.mac == other.mac and self.ip4 == other.ip4 and self.ip6 == other.ip6 and self.ip6_ll == other.ip6_ll) else: return False def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "Host { mac:%s ip4:%s ip6:%s ip6_ll:%s }" % (self.mac, self.ip4, self.ip6, self.ip6_ll) def __hash__(self): return hash(self.__repr__()) def __init__(self, mac=None, ip4=None, ip6=None, ip6_ll=None): self._mac = mac self._ip4 = ip4 self._ip6 = ip6 self._ip6_ll = ip6_ll class ForeignAddressFactory(object): count = 0 prefix_len = 24 net_template = '10.10.10.{}' net = net_template.format(0) + '/' + str(prefix_len) def get_ip4(self): if self.count > 255: raise Exception("Network host address exhaustion") self.count += 1 return self.net_template.format(self.count) class L4_Conn(): """ L4 'connection' tied to two VPP interfaces """ def __init__(self, testcase, if1, if2, af, l4proto, port1, port2): self.testcase = testcase self.ifs = [None, None] self.ifs[0] = if1 self.ifs[1] = if2 self.address_family = af self.l4proto = l4proto self.ports = [None, None] self.ports[0] = port1 self.ports[1] = port2 self def pkt(self, side, l4args={}, payload="x"): is_ip6 = 1 if self.address_family == AF_INET6 else 0 s0 = side s1 = 1 - side src_if = self.ifs[s0] dst_if = self.ifs[s1] layer_3 = [IP(src=src_if.remote_ip4, dst=dst_if.remote_ip4), IPv6(src=src_if.remote_ip6, dst=dst_if.remote_ip6)] merged_l4args = {'sport': self.ports[s0], 'dport': self.ports[s1]} merged_l4args.update(l4args) p = (Ether(dst=src_if.local_mac, src=src_if.remote_mac) / layer_3[is_ip6] / self.l4proto(**merged_l4args) / Raw(payload)) return p def send(self, side, flags=None, payload=""): l4args = {} if flags is not None: l4args['flags'] = flags self.ifs[side].add_stream(self.pkt(side, l4args=l4args, payload=payload)) self.ifs[1 - side].enable_capture() self.testcase.pg_start() def recv(self, side): p = self.ifs[side].wait_for_packet(1) return p def send_through(self, side, flags=None, payload=""): self.send(side, flags, payload) p = self.recv(1 - side) return p def send_pingpong(self, side, flags1=None, flags2=None): p1 = self.send_through(side, flags1) p2 = self.send_through(1 - side, flags2) return [p1, p2] class L4_CONN_SIDE: L4_CONN_SIDE_ZERO = 0 L4_CONN_SIDE_ONE = 1 class LoggerWrapper(object): def __init__(self, logger=None): self._logger = logger def debug(self, *args, **kwargs): if self._logger: self._logger.debug(*args, **kwargs) def error(self, *args, **kwargs): if self._logger: self._logger.error(*args, **kwargs) def fragment_rfc791(packet, fragsize, _logger=None): """ Fragment an IPv4 packet per RFC 791 :param packet: packet to fragment :param fragsize: size at which to fragment :note: IP options are not supported :returns: list of fragments """ logger = LoggerWrapper(_logger) logger.debug(ppp("Fragmenting packet:", packet)) packet = packet.__class__(scapy.compat.raw(packet)) # recalc. all values if len(packet[IP].options) > 0: raise Exception("Not implemented") if len(packet) <= fragsize: return [packet] pre_ip_len = len(packet) - len(packet[IP]) ip_header_len = packet[IP].ihl * 4 hex_packet = scapy.compat.raw(packet) hex_headers = hex_packet[:(pre_ip_len + ip_header_len)] hex_payload = hex_packet[(pre_ip_len + ip_header_len):] pkts = [] ihl = packet[IP].ihl otl = len(packet[IP]) nfb = int((fragsize - pre_ip_len - ihl * 4) / 8) fo = packet[IP].frag p = packet.__class__(hex_headers + hex_payload[:nfb * 8]) p[IP].flags = "MF" p[IP].frag = fo p[IP].len = ihl * 4 + nfb * 8 del p[IP].chksum pkts.append(p) p = packet.__class__(hex_headers + hex_payload[nfb * 8:]) p[IP].len = otl - nfb * 8 p[IP].frag = fo + nfb del p[IP].chksum more_fragments = fragment_rfc791(p, fragsize, _logger) pkts.extend(more_fragments) return pkts def fragment_rfc8200(packet, identification, fragsize, _logger=None): """ Fragment an IPv6 packet per RFC 8200 :param packet: packet to fragment :param fragsize: size at which to fragment :note: IP options are not supported :returns: list of fragments """ logger = LoggerWrapper(_logger) packet = packet.__class__(scapy.compat.raw(packet)) # recalc. all values if len(packet) <= fragsize: return [packet] logger.debug(ppp("Fragmenting packet:", packet)) pkts = [] counter = 0 routing_hdr = None hop_by_hop_hdr = None upper_layer = None seen_ipv6 = False ipv6_nr = -1 l = packet.getlayer(counter) while l is not None: if l.__class__ is IPv6: if seen_ipv6: # ignore 2nd IPv6 header and everything below.. break ipv6_nr = counter seen_ipv6 = True elif l.__class__ is IPv6ExtHdrFragment: raise Exception("Already fragmented") elif l.__class__ is IPv6ExtHdrRouting: routing_hdr = counter elif l.__class__ is IPv6ExtHdrHopByHop: hop_by_hop_hdr = counter elif seen_ipv6 and not upper_layer and \ not l.__class__.__name__.startswith('IPv6ExtHdr'): upper_layer = counter counter = counter + 1 l = packet.getlayer(counter) logger.debug( "Layers seen: IPv6(#%s), Routing(#%s), HopByHop(#%s), upper(#%s)" % (ipv6_nr, routing_hdr, hop_by_hop_hdr, upper_layer)) if upper_layer is None: raise Exception("Upper layer header not found in IPv6 packet") last_per_fragment_hdr = ipv6_nr if routing_hdr is None: if hop_by_hop_hdr is not None: last_per_fragment_hdr = hop_by_hop_hdr else: last_per_fragment_hdr = routing_hdr logger.debug("Last per-fragment hdr is #%s" % (last_per_fragment_hdr)) per_fragment_headers = packet.copy() per_fragment_headers[last_per_fragment_hdr].remove_payload() logger.debug(ppp("Per-fragment headers:", per_fragment_headers)) ext_and_upper_layer = packet.getlayer(last_per_fragment_hdr)[1] hex_payload = scapy.compat.raw(ext_and_upper_layer) logger.debug("Payload length is %s" % len(hex_payload)) logger.debug(ppp("Ext and upper layer:", ext_and_upper_layer)) fragment_ext_hdr = IPv6ExtHdrFragment() logger.debug(ppp("Fragment header:", fragment_ext_hdr)) len_ext_and_upper_layer_payload = len(ext_and_upper_layer.payload) if not len_ext_and_upper_layer_payload and \ hasattr(ext_and_upper_layer, "data"): len_ext_and_upper_layer_payload = len(ext_and_upper_layer.data) if len(per_fragment_headers) + len(fragment_ext_hdr) +\ len(ext_and_upper_layer) - len_ext_and_upper_layer_payload\ > fragsize: raise Exception("Cannot fragment this packet - MTU too small " "(%s, %s, %s, %s, %s)" % ( len(per_fragment_headers), len(fragment_ext_hdr), len(ext_and_upper_layer), len_ext_and_upper_layer_payload, fragsize)) orig_nh = packet[IPv6].nh p = per_fragment_headers del p[IPv6].plen del p[IPv6].nh p = p / fragment_ext_hdr del p[IPv6ExtHdrFragment].nh first_payload_len_nfb = int((fragsize - len(p)) / 8) p = p / Raw(hex_payload[:first_payload_len_nfb * 8]) del p[IPv6].plen p[IPv6ExtHdrFragment].nh = orig_nh p[IPv6ExtHdrFragment].id = identification p[IPv6ExtHdrFragment].offset = 0 p[IPv6ExtHdrFragment].m = 1 p = p.__class__(scapy.compat.raw(p)) logger.debug(ppp("Fragment %s:" % len(pkts), p)) pkts.append(p) offset = first_payload_len_nfb * 8 logger.debug("Offset after first fragment: %s" % offset) while len(hex_payload) > offset: p = per_fragment_headers del p[IPv6].plen del p[IPv6].nh p = p / fragment_ext_hdr del p[IPv6ExtHdrFragment].nh l_nfb = int((fragsize - len(p)) / 8) p = p / Raw(hex_payload[offset:offset + l_nfb * 8]) p[IPv6ExtHdrFragment].nh = orig_nh p[IPv6ExtHdrFragment].id = identification p[IPv6ExtHdrFragment].offset = int(offset / 8) p[IPv6ExtHdrFragment].m = 1 p = p.__class__(scapy.compat.raw(p)) logger.debug(ppp("Fragment %s:" % len(pkts), p)) pkts.append(p) offset = offset + l_nfb * 8 pkts[-1][IPv6ExtHdrFragment].m = 0 # reset more-flags in last fragment return pkts def reassemble4_core(listoffragments, return_ip): buffer = BytesIO() first = listoffragments[0] buffer.seek(20) for pkt in listoffragments: buffer.seek(pkt[IP].frag*8) buffer.write(bytes(pkt[IP].payload)) first.len = len(buffer.getvalue()) + 20 first.flags = 0 del(first.chksum) if return_ip: header = bytes(first[IP])[:20] return first[IP].__class__(header + buffer.getvalue()) else: header = bytes(first[Ether])[:34] return first[Ether].__class__(header + buffer.getvalue()) def reassemble4_ether(listoffragments): return reassemble4_core(listoffragments, False) def reassemble4(listoffragments): return reassemble4_core(listoffragments, True)