1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/* SPDX-License-Identifier: Apache-2.0
* Copyright(c) 2021 Cisco Systems, Inc.
*/
#include <vppinfra/format.h>
#include <vppinfra/test/test.h>
#include <vppinfra/error.h>
test_main_t test_main;
int
test_march_supported (clib_march_variant_type_t type)
{
#define _(s, n) \
if (CLIB_MARCH_VARIANT_TYPE_##s == type) \
return clib_cpu_march_priority_##s ();
foreach_march_variant
#undef _
return 0;
}
clib_error_t *
test_funct (test_main_t *tm)
{
for (int i = 0; i < CLIB_MARCH_TYPE_N_VARIANTS; i++)
{
test_registration_t *r = tm->registrations[i];
if (r == 0 || test_march_supported (i) < 0)
continue;
fformat (stdout, "\nMultiarch Variant: %U\n", format_march_variant, i);
fformat (stdout,
"-------------------------------------------------------\n");
while (r)
{
clib_error_t *err;
if (tm->filter && strstr (r->name, (char *) tm->filter) == 0)
goto next;
err = (r->fn) (0);
fformat (stdout, "%-50s %s\n", r->name, err ? "FAIL" : "PASS");
for (int i = 0; i < vec_len (tm->allocated_mem); i++)
clib_mem_free (tm->allocated_mem[i]);
vec_free (tm->allocated_mem);
if (err)
{
clib_error_report (err);
fformat (stdout, "\n");
}
next:
r = r->next;
}
}
fformat (stdout, "\n");
return 0;
}
#if 0
static u8 *
format_test_perf_bundle_core_power (u8 *s, va_list *args)
{
test_perf_event_bundle_t __clib_unused *b =
va_arg (*args, test_perf_event_bundle_t *);
test_perf_t __clib_unused *tp = va_arg (*args, test_perf_t *);
u64 *data = va_arg (*args, u64 *);
if (data)
s = format (s, "%7.1f %%", (f64) 100 * data[1] / data[0]);
else
s = format (s, "%9s", "Level 0");
if (data)
s = format (s, "%8.1f %%", (f64) 100 * data[2] / data[0]);
else
s = format (s, "%9s", "Level 1");
if (data)
s = format (s, "%7.1f %%", (f64) 100 * data[3] / data[0]);
else
s = format (s, "%9s", "Level 2");
return s;
}
#ifdef __x86_64__
#define PERF_INTEL_CODE(event, umask) ((event) | (umask) << 8)
,
{
.name = "core-power",
.desc =
"Core cycles where the core was running under specific turbo schedule.",
.type = PERF_TYPE_RAW,
.config[0] = PERF_INTEL_CODE (0x3c, 0x00),
.config[1] = PERF_INTEL_CODE (0x28, 0x07),
.config[2] = PERF_INTEL_CODE (0x28, 0x18),
.config[3] = PERF_INTEL_CODE (0x28, 0x20),
.config[4] = PERF_INTEL_CODE (0x28, 0x40),
.n_events = 5,
.format_fn = format_test_perf_bundle_core_power,
}
#endif
};
#endif
#ifdef __linux__
clib_error_t *
test_perf (test_main_t *tm)
{
clib_error_t *err = 0;
clib_perfmon_ctx_t _ctx, *ctx = &_ctx;
if ((err = clib_perfmon_init_by_bundle_name (
ctx, "%s", tm->bundle ? (char *) tm->bundle : "default")))
return err;
fformat (stdout, "Warming up...\n");
clib_perfmon_warmup (ctx);
for (int i = 0; i < CLIB_MARCH_TYPE_N_VARIANTS; i++)
{
test_registration_t *r = tm->registrations[i];
if (r == 0 || test_march_supported (i) < 0)
continue;
fformat (stdout, "\nMultiarch Variant: %U\n", format_march_variant, i);
fformat (stdout,
"-------------------------------------------------------\n");
while (r)
{
if (r->perf_tests)
{
test_perf_t *pt = r->perf_tests;
if (tm->filter && strstr (r->name, (char *) tm->filter) == 0)
goto next;
clib_perfmon_capture_group (ctx, "%s", r->name);
do
{
for (int i = 0; i < tm->repeat; i++)
{
pt->fd = ctx->group_fd;
clib_perfmon_reset (ctx);
pt->fn (pt);
clib_perfmon_capture (ctx, pt->n_ops, "%0s", pt->name);
for (int i = 0; i < vec_len (tm->allocated_mem); i++)
clib_mem_free (tm->allocated_mem[i]);
vec_free (tm->allocated_mem);
}
}
while ((++pt)->fn);
}
next:
r = r->next;
}
fformat (stdout, "%U\n", format_perfmon_bundle, ctx);
clib_perfmon_clear (ctx);
}
clib_perfmon_free (ctx);
return err;
}
#elif __FreeBSD__
clib_error_t *
test_perf (test_main_t *tm)
{
return NULL;
}
#endif
int
main (int argc, char *argv[])
{
test_main_t *tm = &test_main;
unformat_input_t _i = {}, *i = &_i;
clib_mem_init (0, 64ULL << 20);
clib_error_t *err;
int perf = 0;
/* defaults */
tm->repeat = 3;
unformat_init_command_line (i, argv);
while (unformat_check_input (i) != UNFORMAT_END_OF_INPUT)
{
if (unformat (i, "perf"))
perf = 1;
else if (unformat (i, "filter %s", &tm->filter))
;
else if (unformat (i, "bundle %s", &tm->bundle))
;
else if (unformat (i, "repeat %d", &tm->repeat))
;
else
{
clib_warning ("unknown input '%U'", format_unformat_error, i);
exit (1);
}
}
if (perf)
err = test_perf (tm);
else
err = test_funct (tm);
if (err)
{
clib_error_report (err);
fformat (stderr, "\n");
return 1;
}
return 0;
}
void *
test_mem_alloc (uword size)
{
void *rv;
size = round_pow2 (size, CLIB_CACHE_LINE_BYTES);
rv = clib_mem_alloc_aligned (size, CLIB_CACHE_LINE_BYTES);
clib_memset_u8 (rv, 0, size);
vec_add1 (test_main.allocated_mem, rv);
return rv;
}
void *
test_mem_alloc_and_fill_inc_u8 (uword size, u8 start, u8 mask)
{
u8 *rv;
mask = mask ? mask : 0xff;
size = round_pow2 (size, CLIB_CACHE_LINE_BYTES);
rv = clib_mem_alloc_aligned (size, CLIB_CACHE_LINE_BYTES);
for (uword i = 0; i < size; i++)
rv[i] = ((u8) i + start) & mask;
vec_add1 (test_main.allocated_mem, rv);
return rv;
}
void *
test_mem_alloc_and_splat (uword elt_size, uword n_elts, void *elt)
{
u8 *rv, *e;
uword data_size = elt_size * n_elts;
uword alloc_size = round_pow2 (data_size, CLIB_CACHE_LINE_BYTES);
e = rv = clib_mem_alloc_aligned (alloc_size, CLIB_CACHE_LINE_BYTES);
while (e - rv < data_size)
{
clib_memcpy_fast (e, elt, elt_size);
e += elt_size;
}
if (data_size < alloc_size)
clib_memset_u8 (e, 0, alloc_size - data_size);
vec_add1 (test_main.allocated_mem, rv);
return rv;
}
|