summaryrefslogtreecommitdiffstats
path: root/src/vppinfra/test_vec.h
blob: 28e8e2a081de32ed03e53263a0eec64a7803be19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
  Copyright (c) 2001, 2002, 2003 Eliot Dresselhaus

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#ifndef included_test_vec_h
#define included_test_vec_h


#include <vppinfra/clib.h>
#include <vppinfra/mem.h>
#include <vppinfra/format.h>
#include <vppinfra/error.h>


extern uword g_verbose;
extern u32 g_seed;

always_inline u8 *
format_u32_binary (u8 * s, va_list * va)
{
  u32 val = va_arg (*va, u32);
  word i = 0;

  for (i = BITS (val) - 1; i >= 0; i--)
    {
      if (val & (1 << i))
	s = format (s, "1");
      else
	s = format (s, "0");
    }

  return s;
}

#define VERBOSE1(fmt, args...)			\
do {						\
  if (g_verbose >= 1)				\
    fformat (stdout, fmt, ## args);		\
} while (0)

#define VERBOSE2(fmt, args...)			\
do {						\
  if (g_verbose >= 2)				\
    fformat (stdout, fmt, ## args);		\
} while (0)

#define VERBOSE3(fmt, args...)			\
do {						\
  if (g_verbose >= 3)				\
    fformat (stdout, fmt, ## args);		\
} while (0)

#define clib_mem_free_safe(p)			\
do {						\
  if (p)					\
    {						\
      clib_mem_free (p);			\
      (p) = NULL;				\
    }						\
} while (0)

/* XXX - I get undefined symbol trying to call random_u32() <vppinfra/random.h> */
/* Simple random number generator with period 2^31 - 1. */
static u32
my_random_u32 (u32 * seed_return)
{
  /* Unlikely mask value to XOR into seed.
     Otherwise small seed values would give
     non-random seeming smallish numbers. */
  const u32 mask = 0x12345678;
  u32 seed, a, b, result;

  seed = *seed_return;
  seed ^= mask;

  a = seed / 127773;
  b = seed % 127773;
  seed = 16807 * b - 2836 * a;

  if ((i32) seed < 0)
    seed += ((u32) 1 << 31) - 1;

  result = seed;

  *seed_return = seed ^ mask;

  return result;
}

static u32
bounded_random_u32 (u32 * seed, uword lo, uword hi)
{
  if (lo == hi)
    return lo;

  ASSERT (lo < hi);

  return ((my_random_u32 (seed) % (hi - lo + ((hi != ~0) ? (1) : (0)))) + lo);
}

#define fill_with_random_data(ptr, bytes, seed)			\
do {								\
  u8 * _v(p) = (u8 *) (ptr);					\
  uword _v(b) = (bytes);					\
  uword _v(i);							\
								\
  for (_v(i) = 0; _v(i) < _v(b); _v(i)++)			\
    _v(p)[_v(i)] = (u8) bounded_random_u32 (&(seed), 0, 255);	\
								\
} while (0)

#define compute_mem_hash(hash, ptr, bytes)	\
({						\
  u8 * _v(p) = (u8 *) (ptr);			\
  uword _v(b) = (uword) (bytes);		\
  uword _v(i);					\
  uword _v(h) = (u8) (hash);			\
						\
  if (_v(p) && _v(b) > 0)			\
    {						\
      for (_v(i) = 0; _v(i) < _v(b); _v(i)++)	\
	_v(h) ^= _v(p)[_v(i)];			\
    }						\
						\
  _v(h);					\
})

#define log2_align_down(value, align)		\
({						\
  uword _v = (uword) (value);			\
  uword _a = (uword) (align);			\
  uword _m = (1 << _a) - 1;			\
						\
  _v = _v & ~_m;				\
})

#define log2_align_up(value, align)		\
({						\
  uword _v = (uword) (value);			\
  uword _a = (uword) (align);			\
  uword _m = (1 << _a) - 1;			\
						\
  _v = (_v + _m) & ~_m;				\
})

#define log2_align_ptr_down(ptr, align) \
uword_to_pointer (log2_align_down (pointer_to_uword (ptr), align), void *)

#define log2_align_ptr_up(ptr, align) \
uword_to_pointer (log2_align_up (pointer_to_uword (ptr), align), void *)

#define MAX_LOG2_ALIGN		6
#define MAX_UNALIGN_OFFSET	((1 << MAX_LOG2_ALIGN) - 1)

/* Allocates pointer to memory whose address is:
   addr = <log2_align>-aligned address */
always_inline void *
alloc_aligned (uword size, uword log2_align, void **ptr_to_free)
{
  void *p;

  if (size <= 0)
    return NULL;

  p = (void *) clib_mem_alloc (size + (1 << log2_align) - 1);

  if (ptr_to_free)
    *ptr_to_free = p;

  return (p) ? log2_align_ptr_up (p, log2_align) : (NULL);
}

/* Allocates pointer to memory whose address is:
   addr = MAX_LOG2_ALIGN-aligned address + <offset> */
always_inline void *
alloc_unaligned (uword size, uword offset, void **ptr_to_free)
{
  void *p;

  if (size <= 0)
    return NULL;

  ASSERT (offset <= MAX_UNALIGN_OFFSET);

  p =
    alloc_aligned (size + (1 << MAX_LOG2_ALIGN), MAX_LOG2_ALIGN, ptr_to_free);

  if (!p)
    return NULL;

  return (void *) ((u8 *) p + (offset % MAX_UNALIGN_OFFSET));
}

#define memory_snap()						\
do {								\
  clib_mem_usage_t _usage = { 0 };				\
  clib_mem_usage (&_usage);					\
  fformat (stdout, "%U\n", format_clib_mem_usage, _usage, 0);	\
} while (0)


#endif /* included_test_vec_h */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
='#n1070'>1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/*
 * Copyright (c) 2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
  Copyright (c) 2001, 2002, 2003 Eliot Dresselhaus

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

/** \file

    Optimized string handling code, including c11-compliant
    "safe C library" variants.
*/

#ifndef included_clib_string_h
#define included_clib_string_h

#include <vppinfra/clib.h>	/* for CLIB_LINUX_KERNEL */
#include <vppinfra/vector.h>

#ifdef CLIB_LINUX_KERNEL
#include <linux/string.h>
#endif

#ifdef CLIB_UNIX
#include <string.h>
#endif

#ifdef CLIB_STANDALONE
#include <vppinfra/standalone_string.h>
#endif

#if _x86_64_
#include <x86intrin.h>
#endif

/* Exchanges source and destination. */
void clib_memswap (void *_a, void *_b, uword bytes);

/*
 * the vector unit memcpy variants confuse coverity
 * so don't let it anywhere near them.
 */
#ifndef __COVERITY__
#if __AVX512BITALG__
#include <vppinfra/memcpy_avx512.h>
#elif __AVX2__
#include <vppinfra/memcpy_avx2.h>
#elif __SSSE3__
#include <vppinfra/memcpy_sse3.h>
#else
#define clib_memcpy_fast(a,b,c) memcpy(a,b,c)
#endif
#else /* __COVERITY__ */
#define clib_memcpy_fast(a,b,c) memcpy(a,b,c)
#endif

/* c-11 string manipulation variants */

#ifndef EOK
#define EOK 0
#endif
#ifndef EINVAL
#define EINVAL 22
#endif
#ifndef ESRCH
#define ESRCH 3
#endif
#ifndef EOVERFLOW
#define EOVERFLOW 75
#endif

/*
 * In order to provide smooth mapping from unsafe string API to the clib string
 * macro, we often have to improvise s1max and s2max due to the additional
 * arguments are required for implementing the safe API. This macro is used
 * to provide the s1max/s2max. It is not perfect because the actual
 * s1max/s2max may be greater than 4k and the mapping from the unsafe API to
 * the macro would cause a regression. However, it is not terribly likely.
 * So I bet against the odds.
 */
#define CLIB_STRING_MACRO_MAX 4096

typedef int errno_t;
typedef uword rsize_t;

void clib_c11_violation (const char *s);
errno_t memcpy_s (void *__restrict__ dest, rsize_t dmax,
		  const void *__restrict__ src, rsize_t n);

always_inline errno_t
memcpy_s_inline (void *__restrict__ dest, rsize_t dmax,
		 const void *__restrict__ src, rsize_t n)
{
  uword low, hi;
  u8 bad;

  /*
   * Optimize constant-number-of-bytes calls without asking
   * "too many questions for someone from New Jersey"
   */
  if (__builtin_constant_p (n))
    {
      clib_memcpy_fast (dest, src, n);
      return EOK;
    }

  /*
   * call bogus if: src or dst NULL, trying to copy
   * more data than we have space in dst, or src == dst.
   * n == 0 isn't really "bad", so check first in the
   * "wall-of-shame" department...
   */
  bad = (dest == 0) + (src == 0) + (n > dmax) + (dest == src) + (n == 0);
  if (PREDICT_FALSE (bad != 0))
    {
      /* Not actually trying to copy anything is OK */
      if (n == 0)
	return EOK;
      if (dest == NULL)
	clib_c11_violation ("dest NULL");
      if (src == NULL)
	clib_c11_violation ("src NULL");
      if (n > dmax)
	clib_c11_violation ("n > dmax");
      if (dest == src)
	clib_c11_violation ("dest == src");
      return EINVAL;
    }

  /* Check for src/dst overlap, which is not allowed */
  low = (uword) (src < dest ? src : dest);
  hi = (uword) (src < dest ? dest : src);

  if (PREDICT_FALSE (low + (n - 1) >= hi))
    {
      clib_c11_violation ("src/dest overlap");
      return EINVAL;
    }

  clib_memcpy_fast (dest, src, n);
  return EOK;
}

/*
 * Note: $$$ This macro is a crutch. Folks need to manually
 * inspect every extant clib_memcpy(...) call and
 * attempt to provide a real destination buffer size
 * argument...
 */
#define clib_memcpy(d,s,n) memcpy_s_inline(d,n,s,n)

errno_t memset_s (void *s, rsize_t smax, int c, rsize_t n);

always_inline errno_t
memset_s_inline (void *s, rsize_t smax, int c, rsize_t n)
{
  u8 bad;

  bad = (s == 0) + (n > smax);

  if (PREDICT_FALSE (bad != 0))
    {
      if (s == 0)
	clib_c11_violation ("s NULL");
      if (n > smax)
	clib_c11_violation ("n > smax");
      return (EINVAL);
    }
  memset (s, c, n);
  return (EOK);
}

/*
 * This macro is not [so much of] a crutch.
 * It's super-typical to write:
 *
 *   ep = pool_get (<pool>);
 *   clib_memset(ep, 0, sizeof (*ep));
 *
 * The compiler should delete the not-so useful
 * (n > smax) test. TBH the NULL pointer check isn't
 * so useful in this case, but so be it.
 */
#define clib_memset(s,c,n) memset_s_inline(s,n,c,n)

static_always_inline void
clib_memcpy_le (u8 * dst, u8 * src, u8 len, u8 max_len)
{
#if defined (CLIB_HAVE_VEC256)
  u8x32 s0, s1, d0, d1;
  u8x32 mask = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  };
  u8x32 lv = u8x32_splat (len);
  u8x32 add = u8x32_splat (32);

  s0 = u8x32_load_unaligned (src);
  s1 = u8x32_load_unaligned (src + 32);
  d0 = u8x32_load_unaligned (dst);
  d1 = u8x32_load_unaligned (dst + 32);

  d0 = u8x32_blend (d0, s0, u8x32_is_greater (lv, mask));
  u8x32_store_unaligned (d0, dst);

  if (max_len <= 32)
    return;

  mask += add;
  d1 = u8x32_blend (d1, s1, u8x32_is_greater (lv, mask));
  u8x32_store_unaligned (d1, dst + 32);

#elif defined (CLIB_HAVE_VEC128)
  u8x16 s0, s1, s2, s3, d0, d1, d2, d3;
  u8x16 mask = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
  u8x16 lv = u8x16_splat (len);
  u8x16 add = u8x16_splat (16);

  s0 = u8x16_load_unaligned (src);
  s1 = u8x16_load_unaligned (src + 16);
  s2 = u8x16_load_unaligned (src + 32);
  s3 = u8x16_load_unaligned (src + 48);
  d0 = u8x16_load_unaligned (dst);
  d1 = u8x16_load_unaligned (dst + 16);
  d2 = u8x16_load_unaligned (dst + 32);
  d3 = u8x16_load_unaligned (dst + 48);

  d0 = u8x16_blend (d0, s0, u8x16_is_greater (lv, mask));
  u8x16_store_unaligned (d0, dst);

  if (max_len <= 16)
    return;

  mask += add;
  d1 = u8x16_blend (d1, s1, u8x16_is_greater (lv, mask));
  u8x16_store_unaligned (d1, dst + 16);

  if (max_len <= 32)
    return;

  mask += add;
  d2 = u8x16_blend (d2, s2, u8x16_is_greater (lv, mask));
  u8x16_store_unaligned (d2, dst + 32);

  mask += add;
  d3 = u8x16_blend (d3, s3, u8x16_is_greater (lv, mask));
  u8x16_store_unaligned (d3, dst + 48);
#else
  memmove (dst, src, len);
#endif
}

static_always_inline void
clib_memcpy_le64 (u8 * dst, u8 * src, u8 len)
{
  clib_memcpy_le (dst, src, len, 64);
}

static_always_inline void
clib_memcpy_le32 (u8 * dst, u8 * src, u8 len)
{
  clib_memcpy_le (dst, src, len, 32);
}

static_always_inline void
clib_memset_u64 (void *p, u64 val, uword count)
{
  u64 *ptr = p;
#if defined(CLIB_HAVE_VEC512)
  u64x8 v512 = u64x8_splat (val);
  while (count >= 8)
    {
      u64x8_store_unaligned (v512, ptr);
      ptr += 8;
      count -= 8;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC256)
  u64x4 v256 = u64x4_splat (val);
  while (count >= 4)
    {
      u64x4_store_unaligned (v256, ptr);
      ptr += 4;
      count -= 4;
    }
  if (count == 0)
    return;
#else
  while (count >= 4)
    {
      ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
      ptr += 4;
      count -= 4;
    }
#endif
  while (count--)
    ptr++[0] = val;
}

static_always_inline void
clib_memset_u32 (void *p, u32 val, uword count)
{
  u32 *ptr = p;
#if defined(CLIB_HAVE_VEC512)
  u32x16 v512 = u32x16_splat (val);
  while (count >= 16)
    {
      u32x16_store_unaligned (v512, ptr);
      ptr += 16;
      count -= 16;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC256)
  u32x8 v256 = u32x8_splat (val);
  while (count >= 8)
    {
      u32x8_store_unaligned (v256, ptr);
      ptr += 8;
      count -= 8;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE)
  u32x4 v128 = u32x4_splat (val);
  while (count >= 4)
    {
      u32x4_store_unaligned (v128, ptr);
      ptr += 4;
      count -= 4;
    }
#else
  while (count >= 4)
    {
      ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
      ptr += 4;
      count -= 4;
    }
#endif
  while (count--)
    ptr++[0] = val;
}

static_always_inline void
clib_memset_u16 (void *p, u16 val, uword count)
{
  u16 *ptr = p;
#if defined(CLIB_HAVE_VEC512)
  u16x32 v512 = u16x32_splat (val);
  while (count >= 32)
    {
      u16x32_store_unaligned (v512, ptr);
      ptr += 32;
      count -= 32;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC256)
  u16x16 v256 = u16x16_splat (val);
  while (count >= 16)
    {
      u16x16_store_unaligned (v256, ptr);
      ptr += 16;
      count -= 16;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE)
  u16x8 v128 = u16x8_splat (val);
  while (count >= 8)
    {
      u16x8_store_unaligned (v128, ptr);
      ptr += 8;
      count -= 8;
    }
#else
  while (count >= 4)
    {
      ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
      ptr += 4;
      count -= 4;
    }
#endif
  while (count--)
    ptr++[0] = val;
}

static_always_inline void
clib_memset_u8 (void *p, u8 val, uword count)
{
  u8 *ptr = p;
#if defined(CLIB_HAVE_VEC512)
  u8x64 v512 = u8x64_splat (val);
  while (count >= 64)
    {
      u8x64_store_unaligned (v512, ptr);
      ptr += 64;
      count -= 64;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC256)
  u8x32 v256 = u8x32_splat (val);
  while (count >= 32)
    {
      u8x32_store_unaligned (v256, ptr);
      ptr += 32;
      count -= 32;
    }
  if (count == 0)
    return;
#endif
#if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE)
  u8x16 v128 = u8x16_splat (val);
  while (count >= 16)
    {
      u8x16_store_unaligned (v128, ptr);
      ptr += 16;
      count -= 16;
    }
#else
  while (count >= 4)
    {
      ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
      ptr += 4;
      count -= 4;
    }
#endif
  while (count--)
    ptr++[0] = val;
}

static_always_inline uword
clib_count_equal_u64 (u64 * data, uword max_count)
{
  uword count;
  u64 first;

  if (max_count <= 1)
    return max_count;
  if (data[0] != data[1])
    return 1;

  count = 0;
  first = data[0];

#if defined(CLIB_HAVE_VEC256)
  u64x4 splat = u64x4_splat (first);
  while (count + 3 < max_count)
    {
      u64 bmp;
      bmp = u8x32_msb_mask ((u8x32) (u64x4_load_unaligned (data) == splat));
      if (bmp != 0xffffffff)
	{
	  count += count_trailing_zeros (~bmp) / 8;
	  return count;
	}

      data += 4;
      count += 4;
    }
#else
  count += 2;
  data += 2;
  while (count + 3 < max_count &&
	 ((data[0] ^ first) | (data[1] ^ first) |
	  (data[2] ^ first) | (data[3] ^ first)) == 0)
    {
      data += 4;
      count += 4;
    }
#endif
  while (count < max_count && (data[0] == first))
    {
      data += 1;
      count += 1;
    }
  return count;
}

static_always_inline uword
clib_count_equal_u32 (u32 * data, uword max_count)
{
  uword count;
  u32 first;

  if (max_count <= 1)
    return max_count;
  if (data[0] != data[1])
    return 1;

  count = 0;
  first = data[0];

#if defined(CLIB_HAVE_VEC256)
  u32x8 splat = u32x8_splat (first);
  while (count + 7 < max_count)
    {
      u64 bmp;
      bmp = u8x32_msb_mask ((u8x32) (u32x8_load_unaligned (data) == splat));
      if (bmp != 0xffffffff)
	{
	  count += count_trailing_zeros (~bmp) / 4;
	  return count;
	}

      data += 8;
      count += 8;
    }
#elif defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_MSB_MASK)
  u32x4 splat = u32x4_splat (first);
  while (count + 3 < max_count)
    {
      u64 bmp;
      bmp = u8x16_msb_mask ((u8x16) (u32x4_load_unaligned (data) == splat));
      if (bmp != 0xffff)
	{
	  count += count_trailing_zeros (~bmp) / 4;
	  return count;
	}

      data += 4;
      count += 4;
    }
#else
  count += 2;
  data += 2;
  while (count + 3 < max_count &&
	 ((data[0] ^ first) | (data[1] ^ first) |
	  (data[2] ^ first) | (data[3] ^ first)) == 0)
    {
      data += 4;
      count += 4;
    }
#endif
  while (count < max_count && (data[0] == first))
    {
      data += 1;
      count += 1;
    }
  return count;
}

static_always_inline uword
clib_count_equal_u16 (u16 * data, uword max_count)
{
  uword count;
  u16 first;

  if (max_count <= 1)
    return max_count;
  if (data[0] != data[1])
    return 1;

  count = 0;
  first = data[0];

#if defined(CLIB_HAVE_VEC256)
  u16x16 splat = u16x16_splat (first);
  while (count + 15 < max_count)
    {
      u64 bmp;
      bmp = u8x32_msb_mask ((u8x32) (u16x16_load_unaligned (data) == splat));
      if (bmp != 0xffffffff)
	{
	  count += count_trailing_zeros (~bmp) / 2;
	  return count;
	}

      data += 16;
      count += 16;
    }
#elif defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_MSB_MASK)
  u16x8 splat = u16x8_splat (first);
  while (count + 7 < max_count)
    {
      u64 bmp;
      bmp = u8x16_msb_mask ((u8x16) (u16x8_load_unaligned (data) == splat));
      if (bmp != 0xffff)
	{
	  count += count_trailing_zeros (~bmp) / 2;
	  return count;
	}

      data += 8;
      count += 8;
    }
#else
  count += 2;
  data += 2;
  while (count + 3 < max_count &&
	 ((data[0] ^ first) | (data[1] ^ first) |
	  (data[2] ^ first) | (data[3] ^ first)) == 0)
    {
      data += 4;
      count += 4;
    }
#endif
  while (count < max_count && (data[0] == first))
    {
      data += 1;
      count += 1;
    }
  return count;
}

static_always_inline uword
clib_count_equal_u8 (u8 * data, uword max_count)
{
  uword count;
  u8 first;

  if (max_count <= 1)
    return max_count;
  if (data[0] != data[1])
    return 1;

  count = 0;
  first = data[0];

#if defined(CLIB_HAVE_VEC256)
  u8x32 splat = u8x32_splat (first);
  while (count + 31 < max_count)
    {
      u64 bmp;
      bmp = u8x32_msb_mask ((u8x32) (u8x32_load_unaligned (data) == splat));
      if (bmp != 0xffffffff)
	{
	  count += count_trailing_zeros (~bmp);
	  return max_count;
	}

      data += 32;
      count += 32;
    }
#elif defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_MSB_MASK)
  u8x16 splat = u8x16_splat (first);
  while (count + 15 < max_count)
    {
      u64 bmp;
      bmp = u8x16_msb_mask ((u8x16) (u8x16_load_unaligned (data) == splat));
      if (bmp != 0xffff)
	{
	  count += count_trailing_zeros (~bmp);
	  return count;
	}

      data += 16;
      count += 16;
    }
#else
  count += 2;
  data += 2;
  while (count + 3 < max_count &&
	 ((data[0] ^ first) | (data[1] ^ first) |
	  (data[2] ^ first) | (data[3] ^ first)) == 0)
    {
      data += 4;
      count += 4;
    }
#endif
  while (count < max_count && (data[0] == first))
    {
      data += 1;
      count += 1;
    }
  return count;
}

/*
 * This macro is to provide smooth mapping from memcmp to memcmp_s.
 * memcmp has fewer parameters and fewer returns than memcmp_s.
 * This macro is somewhat a crutch. When err != EOK is returned from memcmp_s,
 * we return 0 and spit out a message in the console because there is
 * no way to return the error code to the memcmp callers.
 * This condition happens when s1 or s2 is null. Please note
 * in the extant memcmp calls, if s1, s2, or both are null, memcmp returns 0
 * anyway. So we are consistent in this case for the comparison return
 * although we also spit out a C11 violation message in the console to
 * warn that they pass null pointers for both s1 and s2.
 * Applications are encouraged to use the cool C11 memcmp_s API to get the
 * maximum benefit out of it.
 */
#define clib_memcmp(s1,s2,m1) \
  ({ int __diff = 0;				       \
    memcmp_s_inline (s1, m1, s2, m1, &__diff);	\
    __diff; \
  })

errno_t memcmp_s (const void *s1, rsize_t s1max, const void *s2,
		  rsize_t s2max, int *diff);

always_inline errno_t
memcmp_s_inline (const void *s1, rsize_t s1max, const void *s2, rsize_t s2max,
		 int *diff)
{
  u8 bad;

  bad = (s1 == 0) + (s2 == 0) + (diff == 0) + (s2max > s1max) + (s2max == 0) +
    (s1max == 0);

  if (PREDICT_FALSE (bad != 0))
    {
      if (s1 == NULL)
	clib_c11_violation ("s1 NULL");
      if (s2 == NULL)
	clib_c11_violation ("s2 NULL");
      if (diff == NULL)
	clib_c11_violation ("diff NULL");
      if (s2max > s1max)
	clib_c11_violation ("s2max > s1max");
      if (s2max == 0)
	clib_c11_violation ("s2max 0");
      if (s1max == 0)
	clib_c11_violation ("s1max 0");
      return EINVAL;
    }

  if (PREDICT_FALSE (s1 == s2))
    {
      *diff = 0;
      return EOK;
    }

  *diff = memcmp (s1, s2, s2max);
  return EOK;
}

/*
 * This macro is to provide smooth mapping from strnlen to strnlen_s
 */
#define clib_strnlen(s,m) strnlen_s_inline(s,m)

size_t strnlen_s (const char *s, size_t maxsize);

always_inline size_t
strnlen_s_inline (const char *s, size_t maxsize)
{
  u8 bad;

  bad = (s == 0) + (maxsize == 0);
  if (PREDICT_FALSE (bad != 0))
    {
      if (s == 0)
	clib_c11_violation ("s NULL");
      if (maxsize == 0)
	clib_c11_violation ("maxsize 0");
      return 0;
    }
  return strnlen (s, maxsize);
}

/*
 * This macro is to provide smooth mapping from strcmp to strcmp_s.
 * strcmp has fewer parameters and fewer returns than strcmp_s.
 * This macro is somewhat a crutch. When err != EOK is returned from strcmp_s,
 * we return 0 and spit out a message in the console because
 * there is no way to return the error to the strcmp callers.
 * This condition happens when s1 or s2 is null. Please note in the extant
 * strcmp call, they would end up crashing if one of them is null.
 * So the new behavior is no crash, but an error is displayed in the
 * console which I think is more user friendly. If both s1 and s2 are null,
 * strcmp returns 0. Obviously, strcmp did the pointers comparison prior
 * to actually accessing the pointer contents. We are still consistent
 * in this case for the comparison return although we also spit out a
 * C11 violation message in the console to warn that they pass null pointers
 * for both s1 and s2. The other problem is strcmp does not provide s1max,
 * we use CLIB_STRING_MACRO_MAX and hopefully, s1 is null terminated.
 * If not, we may be accessing memory beyonf what is intended.
 * Applications are encouraged to use the cool C11 strcmp_s API to get the
 * maximum benefit out of it.
 */
#define clib_strcmp(s1,s2) \
  ({ int __indicator = 0; \
    strcmp_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, &__indicator);	\
    __indicator;			\
  })

errno_t strcmp_s (const char *s1, rsize_t s1max, const char *s2,
		  int *indicator);

always_inline errno_t
strcmp_s_inline (const char *s1, rsize_t s1max, const char *s2,
		 int *indicator)
{
  u8 bad;

  bad = (indicator == 0) + (s1 == 0) + (s2 == 0) + (s1max == 0) +
    (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0');

  if (PREDICT_FALSE (bad != 0))
    {
      if (indicator == NULL)
	clib_c11_violation ("indicator NULL");
      if (s1 == NULL)
	clib_c11_violation ("s1 NULL");
      if (s2 == NULL)
	clib_c11_violation ("s2 NULL");
      if (s1max == 0)
	clib_c11_violation ("s1max 0");
      if (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0')
	clib_c11_violation ("s1 unterminated");
      return EINVAL;
    }

  *indicator = strcmp (s1, s2);
  return EOK;
}

/*
 * This macro is to provide smooth mapping from strncmp to strncmp_s.
 * strncmp has fewer parameters and fewer returns than strncmp_s. That said,
 * this macro is somewhat a crutch. When we get err != EOK from strncmp_s,
 * we return 0 and spit out a message in the console because there is no
 * means to return the error to the strncmp caller.
 * This condition happens when s1 or s2 is null. In the extant strncmp call,
 * they would end up crashing if one of them is null. So the new behavior is
 * no crash, but error is displayed in the console which is more
 * user friendly. If s1 and s2 are null, strncmp returns 0. Obviously,
 * strncmp did the pointers comparison prior to actually accessing the
 * pointer contents. We are still consistent in this case for the comparison
 * return although we also spit out a C11 violation message in the console to
 * warn that they pass null pointers for both s1 and s2.
 * Applications are encouraged to use the cool C11 strncmp_s API to get the
 * maximum benefit out of it.
 */
#define clib_strncmp(s1,s2,n) \
  ({ int __indicator = 0; \
    strncmp_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, n, &__indicator);	\
    __indicator;			\
  })

errno_t strncmp_s (const char *s1, rsize_t s1max, const char *s2, rsize_t n,
		   int *indicator);

always_inline errno_t
strncmp_s_inline (const char *s1, rsize_t s1max, const char *s2, rsize_t n,
		  int *indicator)
{
  u8 bad;
  u8 s1_greater_s1max = (s1 && s1max && n > clib_strnlen (s1, s1max));

  if (PREDICT_FALSE (s1_greater_s1max && indicator))
    {
      /*
       * strcmp allows n > s1max. If indicator is non null, we can still
       * do the compare without any harm and return EINVAL as well as the
       * result in indicator.
       */
      clib_c11_violation ("n exceeds s1 length");
      *indicator = strncmp (s1, s2, n);
      return EINVAL;
    }

  bad = (s1 == 0) + (s2 == 0) + (indicator == 0) + (s1max == 0) +
    (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0') + s1_greater_s1max;

  if (PREDICT_FALSE (bad != 0))
    {
      if (indicator == NULL)
	clib_c11_violation ("indicator NULL");
      if (s1 == NULL)
	clib_c11_violation ("s1 NULL");
      if (s2 == NULL)
	clib_c11_violation ("s2 NULL");
      if (s1max == 0)
	clib_c11_violation ("s1max 0");
      if (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0')
	clib_c11_violation ("s1 unterminated");
      if (s1_greater_s1max)
	clib_c11_violation ("n exceeds s1 length");
      return EINVAL;
    }

  *indicator = strncmp (s1, s2, n);
  return EOK;
}

/*
 * This macro is provided for smooth migration from strcpy. It is not perfect
 * because we don't know the size of the destination buffer to pass to strcpy_s.
 * We improvise dmax with CLIB_STRING_MACRO_MAX.
 * Applications are encouraged to move to the C11 strcpy_s API.
 */
#define clib_strcpy(d,s) strcpy_s_inline(d,CLIB_STRING_MACRO_MAX,s)

errno_t strcpy_s (char *__restrict__ dest, rsize_t dmax,
		  const char *__restrict__ src);

always_inline errno_t
strcpy_s_inline (char *__restrict__ dest, rsize_t dmax,
		 const char *__restrict__ src)
{
  u8 bad;
  uword low, hi;
  size_t n;

  bad = (dest == 0) + (dmax == 0) + (src == 0);
  if (PREDICT_FALSE (bad != 0))
    {
      if (dest == 0)
	clib_c11_violation ("dest NULL");
      if (src == 0)
	clib_c11_violation ("src NULL");
      if (dmax == 0)
	clib_c11_violation ("dmax 0");
      return EINVAL;
    }

  n = clib_strnlen (src, dmax);
  if (PREDICT_FALSE (n >= dmax))
    {
      clib_c11_violation ("not enough space for dest");
      return (EINVAL);
    }
  /* Not actually trying to copy anything is OK */
  if (PREDICT_FALSE (n == 0))
    return EOK;

  /* Check for src/dst overlap, which is not allowed */
  low = (uword) (src < dest ? src : dest);
  hi = (uword) (src < dest ? dest : src);

  if (PREDICT_FALSE (low + (n - 1) >= hi))
    {
      clib_c11_violation ("src/dest overlap");
      return EINVAL;
    }

  clib_memcpy_fast (dest, src, n);
  dest[n] = '\0';
  return EOK;
}

/*
 * This macro is provided for smooth migration from strncpy. It is not perfect
 * because we don't know the size of the destination buffer to pass to
 * strncpy_s. We improvise dmax with CLIB_STRING_MACRO_MAX.
 * Applications are encouraged to move to the C11 strncpy_s API and provide
 * the correct dmax for better error checking.
 */
#define clib_strncpy(d,s,n) strncpy_s_inline(d,CLIB_STRING_MACRO_MAX,s,n)

errno_t
strncpy_s (char *__restrict__ dest, rsize_t dmax,
	   const char *__restrict__ src, rsize_t n);

always_inline errno_t
strncpy_s_inline (char *__restrict__ dest, rsize_t dmax,
		  const char *__restrict__ src, rsize_t n)
{
  u8 bad;
  uword low, hi;
  rsize_t m;
  errno_t status = EOK;

  bad = (dest == 0) + (dmax == 0) + (src == 0) + (n == 0);
  if (PREDICT_FALSE (bad != 0))
    {
      /* Not actually trying to copy anything is OK */
      if (n == 0)
	return EOK;
      if (dest == 0)
	clib_c11_violation ("dest NULL");
      if (src == 0)
	clib_c11_violation ("src NULL");
      if (dmax == 0)
	clib_c11_violation ("dmax 0");
      return EINVAL;
    }

  if (PREDICT_FALSE (n >= dmax))
    {
      /* Relax and use strnlen of src */
      clib_c11_violation ("n >= dmax");
      m = clib_strnlen (src, dmax);
      if (m >= dmax)
	{
	  /* Truncate, adjust copy length to fit dest */
	  m = dmax - 1;
	  status = EOVERFLOW;
	}
    }
  else
    /* cap the copy to strlen(src) in case n > strlen(src) */
    m = clib_strnlen (src, n);

  /* Check for src/dst overlap, which is not allowed */
  low = (uword) (src < dest ? src : dest);
  hi = (uword) (src < dest ? dest : src);

  /*
   * This check may fail innocently if src + dmax >= dst, but
   * src + strlen(src) < dst. If it fails, check more carefully before
   * blowing the whistle.
   */
  if (PREDICT_FALSE (low + (m - 1) >= hi))
    {
      m = clib_strnlen (src, m);

      if (low + (m - 1) >= hi)
	{
	  clib_c11_violation ("src/dest overlap");
	  return EINVAL;
	}
    }

  clib_memcpy_fast (dest, src, m);
  dest[m] = '\0';
  return status;
}

/*
 * This macro is to provide smooth migration from strcat to strcat_s.
 * Because there is no dmax in strcat, we improvise it with
 * CLIB_STRING_MACRO_MAX. Please note there may be a chance to overwrite dest
 * with too many bytes from src.
 * Applications are encouraged to use C11 API to provide the actual dmax
 * for proper checking and protection.
 */
#define clib_strcat(d,s) strcat_s_inline(d,CLIB_STRING_MACRO_MAX,s)

errno_t strcat_s (char *__restrict__ dest, rsize_t dmax,
		  const char *__restrict__ src);

always_inline errno_t
strcat_s_inline (char *__restrict__ dest, rsize_t dmax,
		 const char *__restrict__ src)
{
  u8 bad;
  uword low, hi;
  size_t m, n, dest_size;

  bad = (dest == 0) + (dmax == 0) + (src == 0);
  if (PREDICT_FALSE (bad != 0))
    {
      if (dest == 0)
	clib_c11_violation ("dest NULL");
      if (src == 0)
	clib_c11_violation ("src NULL");
      if (dmax == 0)
	clib_c11_violation ("dmax 0");
      return EINVAL;
    }

  dest_size = clib_strnlen (dest, dmax);
  m = dmax - dest_size;
  n = clib_strnlen (src, m);
  if (PREDICT_FALSE (n >= m))
    {
      clib_c11_violation ("not enough space for dest");
      return EINVAL;
    }

  /* Not actually trying to concatenate anything is OK */
  if (PREDICT_FALSE (n == 0))
    return EOK;

  /* Check for src/dst overlap, which is not allowed */
  low = (uword) (src < dest ? src : dest);
  hi = (uword) (src < dest ? dest : src);

  if (PREDICT_FALSE (low + (n - 1) >= hi))
    {
      clib_c11_violation ("src/dest overlap");
      return EINVAL;
    }

  clib_memcpy_fast (dest + dest_size, src, n);
  dest[dest_size + n] = '\0';
  return EOK;
}

/*
 * This macro is to provide smooth migration from strncat to strncat_s.
 * The unsafe strncat does not have s1max. We improvise it with
 * CLIB_STRING_MACRO_MAX. Please note there may be a chance to overwrite
 * dest with too many bytes from src.
 * Applications are encouraged to move to C11 strncat_s which requires dmax
 * from the caller and provides checking to safeguard the memory corruption.
 */
#define clib_strncat(d,s,n) strncat_s_inline(d,CLIB_STRING_MACRO_MAX,s,n)

errno_t strncat_s (char *__restrict__ dest, rsize_t dmax,
		   const char *__restrict__ src, rsize_t n);

always_inline errno_t
strncat_s_inline (char *__restrict__ dest, rsize_t dmax,
		  const char *__restrict__ src, rsize_t n)
{
  u8 bad;
  uword low, hi;
  size_t m, dest_size, allowed_size;
  errno_t status = EOK;

  bad = (dest == 0) + (src == 0) + (dmax == 0) + (n == 0);
  if (PREDICT_FALSE (bad != 0))
    {
      /* Not actually trying to concatenate anything is OK */
      if (n == 0)
	return EOK;
      if (dest == 0)
	clib_c11_violation ("dest NULL");
      if (src == 0)
	clib_c11_violation ("src NULL");
      if (dmax == 0)
	clib_c11_violation ("dmax 0");
      return EINVAL;
    }

  /* Check for src/dst overlap, which is not allowed */
  low = (uword) (src < dest ? src : dest);
  hi = (uword) (src < dest ? dest : src);

  if (PREDICT_FALSE (low + (n - 1) >= hi))
    {
      clib_c11_violation ("src/dest overlap");
      return EINVAL;
    }

  dest_size = clib_strnlen (dest, dmax);
  allowed_size = dmax - dest_size;

  if (PREDICT_FALSE (allowed_size == 0))
    {
      clib_c11_violation ("no space left in dest");
      return (EINVAL);
    }

  if (PREDICT_FALSE (n >= allowed_size))
    {
      /*
       * unlike strcat_s, strncat_s will do the concatenation anyway when
       * there is not enough space in dest. But it will do the truncation and
       * null terminate dest
       */
      m = clib_strnlen (src, allowed_size);
      if (m >= allowed_size)
	{
	  m = allowed_size - 1;
	  status = EOVERFLOW;
	}
    }
  else
    m = clib_strnlen (src, n);

  clib_memcpy_fast (dest + dest_size, src, m);
  dest[dest_size + m] = '\0';
  return status;
}

/*
 * This macro is to provide smooth mapping from strtok_r to strtok_s.
 * To map strtok to this macro, the caller would have to supply an additional
 * argument. strtokr_s requires s1max which the unsafe API does not have. So
 * we have to improvise it with CLIB_STRING_MACRO_MAX. Unlike strtok_s,
 * this macro cannot catch unterminated s1 and s2.
 * Applications are encouraged to use the cool C11 strtok_s API to avoid
 * these problems.
 */
#define clib_strtok(s1,s2,p)		   \
  ({ rsize_t __s1max = CLIB_STRING_MACRO_MAX;	\
    strtok_s_inline (s1, &__s1max, s2, p);		\
  })

char *strtok_s (char *__restrict__ s1, rsize_t * __restrict__ s1max,
		const char *__restrict__ s2, char **__restrict__ ptr);

always_inline char *
strtok_s_inline (char *__restrict__ s1, rsize_t * __restrict__ s1max,
		 const char *__restrict__ s2, char **__restrict__ ptr)
{
#define STRTOK_DELIM_MAX_LEN 16
  u8 bad;
  const char *pt;
  char *ptoken;
  uword dlen, slen;

  bad = (s1max == 0) + (s2 == 0) + (ptr == 0) +
    ((s1 == 0) && ptr && (*ptr == 0));
  if (PREDICT_FALSE (bad != 0))
    {
      if (s2 == NULL)
	clib_c11_violation ("s2 NULL");
      if (s1max == NULL)
	clib_c11_violation ("s1max is NULL");
      if (ptr == NULL)
	clib_c11_violation ("ptr is NULL");
      /* s1 == 0 and *ptr == null is no good */
      if ((s1 == 0) && ptr && (*ptr == 0))
	clib_c11_violation ("s1 and ptr contents are NULL");
      return 0;
    }

  if (s1 == 0)
    s1 = *ptr;

  /*
   * scan s1 for a delimiter
   */
  dlen = *s1max;
  ptoken = 0;
  while (*s1 != '\0' && !ptoken)
    {
      if (PREDICT_FALSE (dlen == 0))
	{
	  *ptr = 0;
	  clib_c11_violation ("s1 unterminated");
	  return 0;
	}

      /*
       * must scan the entire delimiter list
       * ISO should have included a delimiter string limit!!
       */
      slen = STRTOK_DELIM_MAX_LEN;
      pt = s2;
      while (*pt != '\0')
	{
	  if (PREDICT_FALSE (slen == 0))
	    {
	      *ptr = 0;
	      clib_c11_violation ("s2 unterminated");
	      return 0;
	    }
	  slen--;
	  if (*s1 == *pt)
	    {
	      ptoken = 0;
	      break;
	    }
	  else
	    {
	      pt++;
	      ptoken = s1;
	    }
	}
      s1++;
      dlen--;
    }

  /*
   * if the beginning of a token was not found, then no
   * need to continue the scan.
   */
  if (ptoken == 0)
    {
      *s1max = dlen;
      return (ptoken);
    }

  /*
   * Now we need to locate the end of the token
   */
  while (*s1 != '\0')
    {
      if (dlen == 0)
	{
	  *ptr = 0;
	  clib_c11_violation ("s1 unterminated");
	  return 0;
	}

      slen = STRTOK_DELIM_MAX_LEN;
      pt = s2;
      while (*pt != '\0')
	{
	  if (slen == 0)
	    {
	      *ptr = 0;
	      clib_c11_violation ("s2 unterminated");
	      return 0;
	    }
	  slen--;
	  if (*s1 == *pt)
	    {
	      /*
	       * found a delimiter, set to null
	       * and return context ptr to next char
	       */
	      *s1 = '\0';
	      *ptr = (s1 + 1);	/* return pointer for next scan */
	      *s1max = dlen - 1;	/* account for the nulled delimiter */
	      return (ptoken);
	    }
	  else
	    {
	      /*
	       * simply scanning through the delimiter string
	       */
	      pt++;
	    }
	}
      s1++;
      dlen--;
    }

  *ptr = s1;
  *s1max = dlen;
  return (ptoken);
}

/*
 * This macro is to provide smooth mapping from strstr to strstr_s.
 * strstr_s requires s1max and s2max which the unsafe API does not have. So
 * we have to improvise them with CLIB_STRING_MACRO_MAX which may cause us
 * to access memory beyond it is intended if s1 or s2 is unterminated.
 * For the record, strstr crashes if s1 or s2 is unterminated. But this macro
 * does not.
 * Applications are encouraged to use the cool C11 strstr_s API to avoid
 * this problem.
 */
#define clib_strstr(s1,s2) \
  ({ char * __substring = 0; \
    strstr_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, CLIB_STRING_MACRO_MAX, \
		     &__substring);		 \
    __substring;				 \
  })

errno_t strstr_s (char *s1, rsize_t s1max, const char *s2, rsize_t s2max,
		  char **substring);

always_inline errno_t
strstr_s_inline (char *s1, rsize_t s1max, const char *s2, rsize_t s2max,
		 char **substring)
{
  u8 bad;
  size_t s1_size, s2_size;

  bad =
    (s1 == 0) + (s2 == 0) + (substring == 0) + (s1max == 0) + (s2max == 0) +
    (s1 && s1max && (s1[clib_strnlen (s1, s1max)] != '\0')) +
    (s2 && s2max && (s2[clib_strnlen (s2, s2max)] != '\0'));
  if (PREDICT_FALSE (bad != 0))
    {
      if (s1 == 0)
	clib_c11_violation ("s1 NULL");
      if (s2 == 0)
	clib_c11_violation ("s2 NULL");
      if (s1max == 0)
	clib_c11_violation ("s1max 0");
      if (s2max == 0)
	clib_c11_violation ("s2max 0");
      if (substring == 0)
	clib_c11_violation ("substring NULL");
      if (s1 && s1max && (s1[clib_strnlen (s1, s1max)] != '\0'))
	clib_c11_violation ("s1 unterminated");
      if (s2 && s2max && (s2[clib_strnlen (s2, s1max)] != '\0'))
	clib_c11_violation ("s2 unterminated");
      return EINVAL;
    }

  /*
   * s2 points to a string with zero length, or s2 equals s1, return s1
   */
  if (PREDICT_FALSE (*s2 == '\0' || s1 == s2))
    {
      *substring = s1;
      return EOK;
    }

  /*
   * s2_size > s1_size, it won't find match.
   */
  s1_size = clib_strnlen (s1, s1max);
  s2_size = clib_strnlen (s2, s2max);
  if (PREDICT_FALSE (s2_size > s1_size))
    return ESRCH;

  *substring = strstr (s1, s2);
  if (*substring == 0)
    return ESRCH;

  return EOK;
}

#endif /* included_clib_string_h */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */