summaryrefslogtreecommitdiffstats
path: root/src/vppinfra/timing_wheel.c
blob: bbf3012ffd875d01ab55555dfa6108c9e618a414 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <vppinfra/bitmap.h>
#include <vppinfra/hash.h>
#include <vppinfra/pool.h>
#include <vppinfra/timing_wheel.h>

void
timing_wheel_init (timing_wheel_t * w, u64 current_cpu_time,
		   f64 cpu_clocks_per_second)
{
  if (w->max_sched_time <= w->min_sched_time)
    {
      w->min_sched_time = 1e-6;
      w->max_sched_time = 1e-3;
    }

  w->cpu_clocks_per_second = cpu_clocks_per_second;
  w->log2_clocks_per_bin =
    max_log2 (w->cpu_clocks_per_second * w->min_sched_time);
  w->log2_bins_per_wheel =
    max_log2 (w->cpu_clocks_per_second * w->max_sched_time);
  w->log2_bins_per_wheel -= w->log2_clocks_per_bin;
  w->log2_clocks_per_wheel = w->log2_bins_per_wheel + w->log2_clocks_per_bin;
  w->bins_per_wheel = 1 << w->log2_bins_per_wheel;
  w->bins_per_wheel_mask = w->bins_per_wheel - 1;

  w->current_time_index = current_cpu_time >> w->log2_clocks_per_bin;

  if (w->n_wheel_elt_time_bits <= 0 ||
      w->n_wheel_elt_time_bits >= STRUCT_BITS_OF (timing_wheel_elt_t,
						  cpu_time_relative_to_base))
    w->n_wheel_elt_time_bits =
      STRUCT_BITS_OF (timing_wheel_elt_t, cpu_time_relative_to_base) - 1;

  w->cpu_time_base = current_cpu_time;
  w->time_index_next_cpu_time_base_update
    =
    w->current_time_index +
    ((u64) 1 << (w->n_wheel_elt_time_bits - w->log2_clocks_per_bin));
}

always_inline uword
get_level_and_relative_time (timing_wheel_t * w, u64 cpu_time,
			     uword * rtime_result)
{
  u64 dt, rtime;
  uword level_index;

  dt = (cpu_time >> w->log2_clocks_per_bin);

  /* Time should always move forward. */
  ASSERT (dt >= w->current_time_index);

  dt -= w->current_time_index;

  /* Find level and offset within level.  Level i has bins of size 2^((i+1)*M) */
  rtime = dt;
  for (level_index = 0; (rtime >> w->log2_bins_per_wheel) != 0; level_index++)
    rtime = (rtime >> w->log2_bins_per_wheel) - 1;

  /* Return offset within level and level index. */
  ASSERT (rtime < w->bins_per_wheel);
  *rtime_result = rtime;
  return level_index;
}

always_inline uword
time_index_to_wheel_index (timing_wheel_t * w, uword level_index, u64 ti)
{
  return (ti >> (level_index * w->log2_bins_per_wheel)) &
    w->bins_per_wheel_mask;
}

/* Find current time on this level. */
always_inline uword
current_time_wheel_index (timing_wheel_t * w, uword level_index)
{
  return time_index_to_wheel_index (w, level_index, w->current_time_index);
}

/* Circular wheel indexing. */
always_inline uword
wheel_add (timing_wheel_t * w, word x)
{
  return x & w->bins_per_wheel_mask;
}

always_inline uword
rtime_to_wheel_index (timing_wheel_t * w, uword level_index, uword rtime)
{
  uword t = current_time_wheel_index (w, level_index);
  return wheel_add (w, t + rtime);
}

static clib_error_t *
validate_level (timing_wheel_t * w, uword level_index, uword * n_elts)
{
  timing_wheel_level_t *level;
  timing_wheel_elt_t *e;
  uword wi;
  clib_error_t *error = 0;

#define _(x)					\
  do {						\
    error = CLIB_ERROR_ASSERT (x);		\
    ASSERT (! error);				\
    if (error) return error;			\
  } while (0)

  level = vec_elt_at_index (w->levels, level_index);
  for (wi = 0; wi < vec_len (level->elts); wi++)
    {
      /* Validate occupancy bitmap. */
      _(clib_bitmap_get_no_check (level->occupancy_bitmap, wi) ==
	(vec_len (level->elts[wi]) > 0));

      *n_elts += vec_len (level->elts[wi]);

      vec_foreach (e, level->elts[wi])
      {
	/* Validate time bin and level. */
	u64 e_time;
	uword e_ti, e_li, e_wi;

	e_time = e->cpu_time_relative_to_base + w->cpu_time_base;
	e_li = get_level_and_relative_time (w, e_time, &e_ti);
	e_wi = rtime_to_wheel_index (w, level_index, e_ti);

	if (e_li == level_index - 1)
	  /* If this element was scheduled on the previous level
	     it must be wrapped. */
	  _(e_ti + current_time_wheel_index (w, level_index - 1)
	    >= w->bins_per_wheel);
	else
	  {
	    _(e_li == level_index);
	    if (e_li == 0)
	      _(e_wi == wi);
	    else
	      _(e_wi == wi || e_wi + 1 == wi || e_wi - 1 == wi);
	  }
      }
    }

#undef _

  return error;
}

void
timing_wheel_validate (timing_wheel_t * w)
{
  uword l;
  clib_error_t *error = 0;
  uword n_elts;

  if (!w->validate)
    return;

  n_elts = pool_elts (w->overflow_pool);
  for (l = 0; l < vec_len (w->levels); l++)
    {
      error = validate_level (w, l, &n_elts);
      if (error)
	clib_error_report (error);
    }
}

always_inline void
free_elt_vector (timing_wheel_t * w, timing_wheel_elt_t * ev)
{
  /* Poison free elements so we never use them by mistake. */
  if (CLIB_DEBUG > 0)
    clib_memset (ev, ~0, vec_len (ev) * sizeof (ev[0]));
  _vec_len (ev) = 0;
  vec_add1 (w->free_elt_vectors, ev);
}

static timing_wheel_elt_t *
insert_helper (timing_wheel_t * w, uword level_index, uword rtime)
{
  timing_wheel_level_t *level;
  timing_wheel_elt_t *e;
  uword wheel_index;

  /* Circular buffer. */
  vec_validate (w->levels, level_index);
  level = vec_elt_at_index (w->levels, level_index);

  if (PREDICT_FALSE (!level->elts))
    {
      uword max = w->bins_per_wheel - 1;
      clib_bitmap_validate (level->occupancy_bitmap, max);
      vec_validate (level->elts, max);
    }

  wheel_index = rtime_to_wheel_index (w, level_index, rtime);

  level->occupancy_bitmap =
    clib_bitmap_ori (level->occupancy_bitmap, wheel_index);

  /* Allocate an elt vector from free list if there is one. */
  if (!level->elts[wheel_index] && vec_len (w->free_elt_vectors))
    level->elts[wheel_index] = vec_pop (w->free_elt_vectors);

  /* Add element to vector for this time bin. */
  vec_add2 (level->elts[wheel_index], e, 1);

  return e;
}

/* Insert user data on wheel at given CPU time stamp. */
static void
timing_wheel_insert_helper (timing_wheel_t * w, u64 insert_cpu_time,
			    u32 user_data)
{
  timing_wheel_elt_t *e;
  u64 dt;
  uword rtime, level_index;

  level_index = get_level_and_relative_time (w, insert_cpu_time, &rtime);

  dt = insert_cpu_time - w->cpu_time_base;
  if (PREDICT_TRUE (0 == (dt >> BITS (e->cpu_time_relative_to_base))))
    {
      e = insert_helper (w, level_index, rtime);
      e->user_data = user_data;
      e->cpu_time_relative_to_base = dt;
      if (insert_cpu_time < w->cached_min_cpu_time_on_wheel)
	w->cached_min_cpu_time_on_wheel = insert_cpu_time;
    }
  else
    {
      /* Time too far in the future: add to overflow vector. */
      timing_wheel_overflow_elt_t *oe;
      pool_get (w->overflow_pool, oe);
      oe->user_data = user_data;
      oe->cpu_time = insert_cpu_time;
    }
}

always_inline uword
elt_is_deleted (timing_wheel_t * w, u32 user_data)
{
  return (hash_elts (w->deleted_user_data_hash) > 0
	  && hash_get (w->deleted_user_data_hash, user_data));
}

static timing_wheel_elt_t *
delete_user_data (timing_wheel_elt_t * elts, u32 user_data)
{
  uword found_match;
  timing_wheel_elt_t *e, *new_elts;

  /* Quickly scan to see if there are any elements to delete
     in this bucket. */
  found_match = 0;
  vec_foreach (e, elts)
  {
    found_match = e->user_data == user_data;
    if (found_match)
      break;
  }
  if (!found_match)
    return elts;

  /* Re-scan to build vector of new elts with matching user_data deleted. */
  new_elts = 0;
  vec_foreach (e, elts)
  {
    if (e->user_data != user_data)
      vec_add1 (new_elts, e[0]);
  }

  vec_free (elts);
  return new_elts;
}

/* Insert user data on wheel at given CPU time stamp. */
void
timing_wheel_insert (timing_wheel_t * w, u64 insert_cpu_time, u32 user_data)
{
  /* Remove previously deleted elements. */
  if (elt_is_deleted (w, user_data))
    {
      timing_wheel_level_t *l;
      uword wi;

      /* Delete elts with given user data so that stale events don't expire. */
      vec_foreach (l, w->levels)
      {
	  /* *INDENT-OFF* */
	  clib_bitmap_foreach (wi, l->occupancy_bitmap, ({
	    l->elts[wi] = delete_user_data (l->elts[wi], user_data);
	    if (vec_len (l->elts[wi]) == 0)
	      l->occupancy_bitmap = clib_bitmap_andnoti (l->occupancy_bitmap, wi);
	  }));
	  /* *INDENT-ON* */
      }

      {
	timing_wheel_overflow_elt_t *oe;
	/* *INDENT-OFF* */
	pool_foreach (oe, w->overflow_pool, ({
	  if (oe->user_data == user_data)
	    pool_put (w->overflow_pool, oe);
	}));
	/* *INDENT-ON* */
      }

      hash_unset (w->deleted_user_data_hash, user_data);
    }

  timing_wheel_insert_helper (w, insert_cpu_time, user_data);
}

void
timing_wheel_delete (timing_wheel_t * w, u32 user_data)
{
  if (!w->deleted_user_data_hash)
    w->deleted_user_data_hash =
      hash_create ( /* capacity */ 0, /* value bytes */ 0);

  hash_set1 (w->deleted_user_data_hash, user_data);
}

/* Returns time of next expiring element. */
u64
timing_wheel_next_expiring_elt_time (timing_wheel_t * w)
{
  timing_wheel_level_t *l;
  timing_wheel_elt_t *e;
  uword li, wi, wi0;
  u32 min_dt;
  u64 min_t;
  uword wrapped = 0;

  min_dt = ~0;
  min_t = ~0ULL;
  vec_foreach (l, w->levels)
  {
    if (!l->occupancy_bitmap)
      continue;

    li = l - w->levels;
    wi0 = wi = current_time_wheel_index (w, li);
    wrapped = 0;
    while (1)
      {
	if (clib_bitmap_get_no_check (l->occupancy_bitmap, wi))
	  {
	    vec_foreach (e, l->elts[wi])
	      min_dt = clib_min (min_dt, e->cpu_time_relative_to_base);

	    if (wrapped && li + 1 < vec_len (w->levels))
	      {
		uword wi1 = current_time_wheel_index (w, li + 1);
		if (l[1].occupancy_bitmap
		    && clib_bitmap_get_no_check (l[1].occupancy_bitmap, wi1))
		  {
		    vec_foreach (e, l[1].elts[wi1])
		    {
		      min_dt =
			clib_min (min_dt, e->cpu_time_relative_to_base);
		    }
		  }
	      }

	    min_t = w->cpu_time_base + min_dt;
	    goto done;
	  }

	wi = wheel_add (w, wi + 1);
	if (wi == wi0)
	  break;

	wrapped = wi != wi + 1;
      }
  }

  {
    timing_wheel_overflow_elt_t *oe;

    if (min_dt != ~0)
      min_t = w->cpu_time_base + min_dt;

    /* *INDENT-OFF* */
    pool_foreach (oe, w->overflow_pool,
		  ({ min_t = clib_min (min_t, oe->cpu_time); }));
    /* *INDENT-ON* */

  done:
    return min_t;
  }
}

static inline void
insert_elt (timing_wheel_t * w, timing_wheel_elt_t * e)
{
  u64 t = w->cpu_time_base + e->cpu_time_relative_to_base;
  timing_wheel_insert_helper (w, t, e->user_data);
}

always_inline u64
elt_cpu_time (timing_wheel_t * w, timing_wheel_elt_t * e)
{
  return w->cpu_time_base + e->cpu_time_relative_to_base;
}

always_inline void
validate_expired_elt (timing_wheel_t * w, timing_wheel_elt_t * e,
		      u64 current_cpu_time)
{
  if (CLIB_DEBUG > 0)
    {
      u64 e_time = elt_cpu_time (w, e);

      /* Verify that element is actually expired. */
      ASSERT ((e_time >> w->log2_clocks_per_bin)
	      <= (current_cpu_time >> w->log2_clocks_per_bin));
    }
}

static u32 *
expire_bin (timing_wheel_t * w,
	    uword level_index,
	    uword wheel_index, u64 advance_cpu_time, u32 * expired_user_data)
{
  timing_wheel_level_t *level = vec_elt_at_index (w->levels, level_index);
  timing_wheel_elt_t *e;
  u32 *x;
  uword i, j, e_len;

  e = vec_elt (level->elts, wheel_index);
  e_len = vec_len (e);

  vec_add2 (expired_user_data, x, e_len);
  for (i = j = 0; i < e_len; i++)
    {
      validate_expired_elt (w, &e[i], advance_cpu_time);
      x[j] = e[i].user_data;

      /* Only advance if elt is not to be deleted. */
      j += !elt_is_deleted (w, e[i].user_data);
    }

  /* Adjust for deleted elts. */
  if (j < e_len)
    _vec_len (expired_user_data) -= e_len - j;

  free_elt_vector (w, e);

  level->elts[wheel_index] = 0;
  clib_bitmap_set_no_check (level->occupancy_bitmap, wheel_index, 0);

  return expired_user_data;
}

/* Called rarely. 32 bit times should only overflow every 4 seconds or so on a fast machine. */
static u32 *
advance_cpu_time_base (timing_wheel_t * w, u32 * expired_user_data)
{
  timing_wheel_level_t *l;
  timing_wheel_elt_t *e;
  u64 delta;

  w->stats.cpu_time_base_advances++;
  delta = ((u64) 1 << w->n_wheel_elt_time_bits);
  w->cpu_time_base += delta;
  w->time_index_next_cpu_time_base_update += delta >> w->log2_clocks_per_bin;

  vec_foreach (l, w->levels)
  {
    uword wi;
      /* *INDENT-OFF* */
      clib_bitmap_foreach (wi, l->occupancy_bitmap, ({
	vec_foreach (e, l->elts[wi])
	  {
	    /* This should always be true since otherwise we would have already expired
	       this element. Note that in the second half of this function we need
               to take care not to place the expired elements ourselves. */
	    ASSERT (e->cpu_time_relative_to_base >= delta);
	    e->cpu_time_relative_to_base -= delta;
	  }
      }));
      /* *INDENT-ON* */
  }

  /* See which overflow elements fit now. */
  {
    timing_wheel_overflow_elt_t *oe;
    /* *INDENT-OFF* */
    pool_foreach (oe, w->overflow_pool, ({
      /* It fits now into 32 bits. */
      if (0 == ((oe->cpu_time - w->cpu_time_base) >> BITS (e->cpu_time_relative_to_base)))
	{
	  u64 ti = oe->cpu_time >> w->log2_clocks_per_bin;
	  if (ti <= w->current_time_index)
	    {
	      /* This can happen when timing wheel is not advanced for a long time
		 (for example when at a gdb breakpoint for a while). */
              /* Note: the ti == w->current_time_index means it is also an expired timer */
	      if (! elt_is_deleted (w, oe->user_data))
		vec_add1 (expired_user_data, oe->user_data);
	    }
	  else
	    timing_wheel_insert_helper (w, oe->cpu_time, oe->user_data);
	  pool_put (w->overflow_pool, oe);
	}
    }));
    /* *INDENT-ON* */
  }
  return expired_user_data;
}

static u32 *
refill_level (timing_wheel_t * w,
	      uword level_index,
	      u64 advance_cpu_time,
	      uword from_wheel_index,
	      uword to_wheel_index, u32 * expired_user_data)
{
  timing_wheel_level_t *level;
  timing_wheel_elt_t *to_insert = w->unexpired_elts_pending_insert;
  u64 advance_time_index = advance_cpu_time >> w->log2_clocks_per_bin;

  vec_validate (w->stats.refills, level_index);
  w->stats.refills[level_index] += 1;

  if (level_index + 1 >= vec_len (w->levels))
    goto done;

  level = vec_elt_at_index (w->levels, level_index + 1);
  if (!level->occupancy_bitmap)
    goto done;

  while (1)
    {
      timing_wheel_elt_t *e, *es;

      if (clib_bitmap_get_no_check
	  (level->occupancy_bitmap, from_wheel_index))
	{
	  es = level->elts[from_wheel_index];
	  level->elts[from_wheel_index] = 0;
	  clib_bitmap_set_no_check (level->occupancy_bitmap, from_wheel_index,
				    0);

	  vec_foreach (e, es)
	  {
	    u64 e_time = elt_cpu_time (w, e);
	    u64 ti = e_time >> w->log2_clocks_per_bin;
	    if (ti <= advance_time_index)
	      {
		validate_expired_elt (w, e, advance_cpu_time);
		if (!elt_is_deleted (w, e->user_data))
		  vec_add1 (expired_user_data, e->user_data);
	      }
	    else
	      vec_add1 (to_insert, e[0]);
	  }
	  free_elt_vector (w, es);
	}

      if (from_wheel_index == to_wheel_index)
	break;

      from_wheel_index = wheel_add (w, from_wheel_index + 1);
    }

  timing_wheel_validate (w);
done:
  w->unexpired_elts_pending_insert = to_insert;
  return expired_user_data;
}

/* Advance wheel and return any expired user data in vector. */
u32 *
timing_wheel_advance (timing_wheel_t * w, u64 advance_cpu_time,
		      u32 * expired_user_data,
		      u64 * next_expiring_element_cpu_time)
{
  timing_wheel_level_t *level;
  uword level_index, advance_rtime, advance_level_index, advance_wheel_index;
  uword n_expired_user_data_before;
  u64 current_time_index, advance_time_index;

  n_expired_user_data_before = vec_len (expired_user_data);

  /* Re-fill lower levels when time wraps. */
  current_time_index = w->current_time_index;
  advance_time_index = advance_cpu_time >> w->log2_clocks_per_bin;

  {
    u64 current_ti, advance_ti;

    current_ti = current_time_index >> w->log2_bins_per_wheel;
    advance_ti = advance_time_index >> w->log2_bins_per_wheel;

    if (PREDICT_FALSE (current_ti != advance_ti))
      {
	if (w->unexpired_elts_pending_insert)
	  _vec_len (w->unexpired_elts_pending_insert) = 0;

	level_index = 0;
	while (current_ti != advance_ti)
	  {
	    uword c, a;
	    c = current_ti & (w->bins_per_wheel - 1);
	    a = advance_ti & (w->bins_per_wheel - 1);
	    if (c != a)
	      expired_user_data = refill_level (w,
						level_index,
						advance_cpu_time,
						c, a, expired_user_data);
	    current_ti >>= w->log2_bins_per_wheel;
	    advance_ti >>= w->log2_bins_per_wheel;
	    level_index++;
	  }
      }
  }

  advance_level_index =
    get_level_and_relative_time (w, advance_cpu_time, &advance_rtime);
  advance_wheel_index =
    rtime_to_wheel_index (w, advance_level_index, advance_rtime);

  /* Empty all occupied bins for entire levels that we advance past. */
  for (level_index = 0; level_index < advance_level_index; level_index++)
    {
      uword wi;

      if (level_index >= vec_len (w->levels))
	break;

      level = vec_elt_at_index (w->levels, level_index);
      /* *INDENT-OFF* */
      clib_bitmap_foreach (wi, level->occupancy_bitmap, ({
        expired_user_data = expire_bin (w, level_index, wi, advance_cpu_time,
					expired_user_data);
      }));
      /* *INDENT-ON* */
    }

  if (PREDICT_TRUE (level_index < vec_len (w->levels)))
    {
      uword wi;
      level = vec_elt_at_index (w->levels, level_index);
      wi = current_time_wheel_index (w, level_index);
      if (level->occupancy_bitmap)
	while (1)
	  {
	    if (clib_bitmap_get_no_check (level->occupancy_bitmap, wi))
	      expired_user_data =
		expire_bin (w, advance_level_index, wi, advance_cpu_time,
			    expired_user_data);

	    /* When we jump out, we have already just expired the bin,
	       corresponding to advance_wheel_index */
	    if (wi == advance_wheel_index)
	      break;

	    wi = wheel_add (w, wi + 1);
	  }
    }

  /* Advance current time index. */
  w->current_time_index = advance_time_index;

  if (vec_len (w->unexpired_elts_pending_insert) > 0)
    {
      timing_wheel_elt_t *e;
      vec_foreach (e, w->unexpired_elts_pending_insert) insert_elt (w, e);
      _vec_len (w->unexpired_elts_pending_insert) = 0;
    }

  /* Don't advance until necessary. */
  /* However, if the timing_wheel_advance() hasn't been called for some time,
     the while() loop will ensure multiple calls to advance_cpu_time_base()
     in a row until the w->cpu_time_base is fresh enough. */
  while (PREDICT_FALSE
	 (advance_time_index >= w->time_index_next_cpu_time_base_update))
    expired_user_data = advance_cpu_time_base (w, expired_user_data);

  if (next_expiring_element_cpu_time)
    {
      u64 min_t;

      /* Anything expired?  If so we need to recompute next expiring elt time. */
      if (vec_len (expired_user_data) == n_expired_user_data_before
	  && w->cached_min_cpu_time_on_wheel != 0ULL)
	min_t = w->cached_min_cpu_time_on_wheel;
      else
	{
	  min_t = timing_wheel_next_expiring_elt_time (w);
	  w->cached_min_cpu_time_on_wheel = min_t;
	}

      *next_expiring_element_cpu_time = min_t;
    }

  return expired_user_data;
}

u8 *
format_timing_wheel (u8 * s, va_list * va)
{
  timing_wheel_t *w = va_arg (*va, timing_wheel_t *);
  int verbose = va_arg (*va, int);
  u32 indent = format_get_indent (s);

  s = format (s, "level 0: %.4e - %.4e secs, 2^%d - 2^%d clocks",
	      (f64) (1 << w->log2_clocks_per_bin) / w->cpu_clocks_per_second,
	      (f64) (1 << w->log2_clocks_per_wheel) /
	      w->cpu_clocks_per_second, w->log2_clocks_per_bin,
	      w->log2_clocks_per_wheel);

  if (verbose)
    {
      int l;

      s = format (s, "\n%Utime base advances %Ld, every %.4e secs",
		  format_white_space, indent + 2,
		  w->stats.cpu_time_base_advances,
		  (f64) ((u64) 1 << w->n_wheel_elt_time_bits) /
		  w->cpu_clocks_per_second);

      for (l = 0; l < vec_len (w->levels); l++)
	s = format (s, "\n%Ulevel %d: refills %Ld",
		    format_white_space, indent + 2,
		    l,
		    l <
		    vec_len (w->stats.refills) ? w->stats.
		    refills[l] : (u64) 0);
    }

  return s;
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
an> u8 buffer_pool_index) { u32 n_alloc; ASSERT (n_buffers <= ring_size); if (PREDICT_TRUE (start + n_buffers <= ring_size)) return vlib_buffer_alloc_from_pool (vm, ring + start, n_buffers, buffer_pool_index); n_alloc = vlib_buffer_alloc_from_pool (vm, ring + start, ring_size - start, buffer_pool_index); if (PREDICT_TRUE (n_alloc == ring_size - start)) n_alloc += vlib_buffer_alloc_from_pool (vm, ring, n_buffers - n_alloc, buffer_pool_index); return n_alloc; } static_always_inline void vlib_buffer_pool_put (vlib_main_t * vm, u8 buffer_pool_index, u32 * buffers, u32 n_buffers) { vlib_buffer_pool_t *bp = vlib_get_buffer_pool (vm, buffer_pool_index); vlib_buffer_pool_thread_t *bpt = vec_elt_at_index (bp->threads, vm->thread_index); if (CLIB_DEBUG > 0) vlib_buffer_validate_alloc_free (vm, buffers, n_buffers, VLIB_BUFFER_KNOWN_ALLOCATED); vec_add_aligned (bpt->cached_buffers, buffers, n_buffers, CLIB_CACHE_LINE_BYTES); if (vec_len (bpt->cached_buffers) > 4 * VLIB_FRAME_SIZE) { clib_spinlock_lock (&bp->lock); /* keep last stored buffers, as they are more likely hot in the cache */ vec_add_aligned (bp->buffers, bpt->cached_buffers, VLIB_FRAME_SIZE, CLIB_CACHE_LINE_BYTES); vec_delete (bpt->cached_buffers, VLIB_FRAME_SIZE, 0); bpt->n_alloc -= VLIB_FRAME_SIZE; clib_spinlock_unlock (&bp->lock); } } static_always_inline void vlib_buffer_free_inline (vlib_main_t * vm, u32 * buffers, u32 n_buffers, int maybe_next) { const int queue_size = 128; vlib_buffer_pool_t *bp = 0; u8 buffer_pool_index = ~0; u32 n_queue = 0, queue[queue_size + 4]; vlib_buffer_t bt = { }; #if defined(CLIB_HAVE_VEC128) && !__aarch64__ vlib_buffer_t bpi_mask = {.buffer_pool_index = ~0 }; vlib_buffer_t bpi_vec = {.buffer_pool_index = ~0 }; vlib_buffer_t flags_refs_mask = { .flags = VLIB_BUFFER_NEXT_PRESENT, .ref_count = ~0 }; #endif while (n_buffers) { vlib_buffer_t *b[8]; u32 bi, sum = 0, flags, next; if (n_buffers < 12) goto one_by_one; vlib_get_buffers (vm, buffers, b, 4); vlib_get_buffers (vm, buffers + 8, b + 4, 4); vlib_prefetch_buffer_header (b[4], LOAD); vlib_prefetch_buffer_header (b[5], LOAD); vlib_prefetch_buffer_header (b[6], LOAD); vlib_prefetch_buffer_header (b[7], LOAD); #if defined(CLIB_HAVE_VEC128) && !__aarch64__ u8x16 p0, p1, p2, p3, r; p0 = u8x16_load_unaligned (b[0]); p1 = u8x16_load_unaligned (b[1]); p2 = u8x16_load_unaligned (b[2]); p3 = u8x16_load_unaligned (b[3]); r = p0 ^ bpi_vec.as_u8x16[0]; r |= p1 ^ bpi_vec.as_u8x16[0]; r |= p2 ^ bpi_vec.as_u8x16[0]; r |= p3 ^ bpi_vec.as_u8x16[0]; r &= bpi_mask.as_u8x16[0]; r |= (p0 | p1 | p2 | p3) & flags_refs_mask.as_u8x16[0]; sum = !u8x16_is_all_zero (r); #else sum |= b[0]->flags; sum |= b[1]->flags; sum |= b[2]->flags; sum |= b[3]->flags; sum &= VLIB_BUFFER_NEXT_PRESENT; sum += b[0]->ref_count - 1; sum += b[1]->ref_count - 1; sum += b[2]->ref_count - 1; sum += b[3]->ref_count - 1; sum |= b[0]->buffer_pool_index ^ buffer_pool_index; sum |= b[1]->buffer_pool_index ^ buffer_pool_index; sum |= b[2]->buffer_pool_index ^ buffer_pool_index; sum |= b[3]->buffer_pool_index ^ buffer_pool_index; #endif if (sum) goto one_by_one; vlib_buffer_copy_indices (queue + n_queue, buffers, 4); vlib_buffer_copy_template (b[0], &bt); vlib_buffer_copy_template (b[1], &bt); vlib_buffer_copy_template (b[2], &bt); vlib_buffer_copy_template (b[3], &bt); n_queue += 4; vlib_buffer_validate (vm, b[0]); vlib_buffer_validate (vm, b[1]); vlib_buffer_validate (vm, b[2]); vlib_buffer_validate (vm, b[3]); VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b[0]); VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b[1]); VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b[2]); VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b[3]); if (n_queue >= queue_size) { vlib_buffer_pool_put (vm, buffer_pool_index, queue, n_queue); n_queue = 0; } buffers += 4; n_buffers -= 4; continue; one_by_one: bi = buffers[0]; next_in_chain: b[0] = vlib_get_buffer (vm, bi); flags = b[0]->flags; next = b[0]->next_buffer; if (PREDICT_FALSE (buffer_pool_index != b[0]->buffer_pool_index)) { if (n_queue) { vlib_buffer_pool_put (vm, buffer_pool_index, queue, n_queue); n_queue = 0; } buffer_pool_index = b[0]->buffer_pool_index; #if defined(CLIB_HAVE_VEC128) && !__aarch64__ bpi_vec.buffer_pool_index = buffer_pool_index; #endif bp = vlib_get_buffer_pool (vm, buffer_pool_index); vlib_buffer_copy_template (&bt, &bp->buffer_template); } vlib_buffer_validate (vm, b[0]); VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b[0]); if (clib_atomic_sub_fetch (&b[0]->ref_count, 1) == 0) { vlib_buffer_copy_template (b[0], &bt); queue[n_queue++] = bi; } if (n_queue == queue_size) { vlib_buffer_pool_put (vm, buffer_pool_index, queue, queue_size); n_queue = 0; } if (flags & VLIB_BUFFER_NEXT_PRESENT) { bi = next; goto next_in_chain; } buffers++; n_buffers--; } if (n_queue) vlib_buffer_pool_put (vm, buffer_pool_index, queue, n_queue); } /** \brief Free buffers Frees the entire buffer chain for each buffer @param vm - (vlib_main_t *) vlib main data structure pointer @param buffers - (u32 * ) buffer index array @param n_buffers - (u32) number of buffers to free */ always_inline void vlib_buffer_free (vlib_main_t * vm, /* pointer to first buffer */ u32 * buffers, /* number of buffers to free */ u32 n_buffers) { vlib_buffer_free_inline (vm, buffers, n_buffers, /* maybe next */ 1); } /** \brief Free buffers, does not free the buffer chain for each buffer @param vm - (vlib_main_t *) vlib main data structure pointer @param buffers - (u32 * ) buffer index array @param n_buffers - (u32) number of buffers to free */ always_inline void vlib_buffer_free_no_next (vlib_main_t * vm, /* pointer to first buffer */ u32 * buffers, /* number of buffers to free */ u32 n_buffers) { vlib_buffer_free_inline (vm, buffers, n_buffers, /* maybe next */ 0); } /** \brief Free one buffer Shorthand to free a single buffer chain. @param vm - (vlib_main_t *) vlib main data structure pointer @param buffer_index - (u32) buffer index to free */ always_inline void vlib_buffer_free_one (vlib_main_t * vm, u32 buffer_index) { vlib_buffer_free_inline (vm, &buffer_index, 1, /* maybe next */ 1); } /** \brief Free buffers from ring @param vm - (vlib_main_t *) vlib main data structure pointer @param buffers - (u32 * ) buffer index ring @param start - (u32) first slot in the ring @param ring_size - (u32) ring size @param n_buffers - (u32) number of buffers */ always_inline void vlib_buffer_free_from_ring (vlib_main_t * vm, u32 * ring, u32 start, u32 ring_size, u32 n_buffers) { ASSERT (n_buffers <= ring_size); if (PREDICT_TRUE (start + n_buffers <= ring_size)) { vlib_buffer_free (vm, ring + start, n_buffers); } else { vlib_buffer_free (vm, ring + start, ring_size - start); vlib_buffer_free (vm, ring, n_buffers - (ring_size - start)); } } /** \brief Free buffers from ring without freeing tail buffers @param vm - (vlib_main_t *) vlib main data structure pointer @param buffers - (u32 * ) buffer index ring @param start - (u32) first slot in the ring @param ring_size - (u32) ring size @param n_buffers - (u32) number of buffers */ always_inline void vlib_buffer_free_from_ring_no_next (vlib_main_t * vm, u32 * ring, u32 start, u32 ring_size, u32 n_buffers) { ASSERT (n_buffers <= ring_size); if (PREDICT_TRUE (start + n_buffers <= ring_size)) { vlib_buffer_free_no_next (vm, ring + start, n_buffers); } else { vlib_buffer_free_no_next (vm, ring + start, ring_size - start); vlib_buffer_free_no_next (vm, ring, n_buffers - (ring_size - start)); } } /* Append given data to end of buffer, possibly allocating new buffers. */ int vlib_buffer_add_data (vlib_main_t * vm, u32 * buffer_index, void *data, u32 n_data_bytes); /* duplicate all buffers in chain */ always_inline vlib_buffer_t * vlib_buffer_copy (vlib_main_t * vm, vlib_buffer_t * b) { vlib_buffer_t *s, *d, *fd; uword n_alloc, n_buffers = 1; u32 flag_mask = VLIB_BUFFER_NEXT_PRESENT | VLIB_BUFFER_TOTAL_LENGTH_VALID; int i; s = b; while (s->flags & VLIB_BUFFER_NEXT_PRESENT) { n_buffers++; s = vlib_get_buffer (vm, s->next_buffer); } u32 new_buffers[n_buffers]; n_alloc = vlib_buffer_alloc (vm, new_buffers, n_buffers); /* No guarantee that we'll get all the buffers we asked for */ if (PREDICT_FALSE (n_alloc < n_buffers)) { if (n_alloc > 0) vlib_buffer_free (vm, new_buffers, n_alloc); return 0; } /* 1st segment */ s = b; fd = d = vlib_get_buffer (vm, new_buffers[0]); d->current_data = s->current_data; d->current_length = s->current_length; d->flags = s->flags & flag_mask; d->total_length_not_including_first_buffer = s->total_length_not_including_first_buffer; clib_memcpy_fast (d->opaque, s->opaque, sizeof (s->opaque)); clib_memcpy_fast (d->opaque2, s->opaque2, sizeof (s->opaque2)); clib_memcpy_fast (vlib_buffer_get_current (d), vlib_buffer_get_current (s), s->current_length); /* next segments */ for (i = 1; i < n_buffers; i++) { /* previous */ d->next_buffer = new_buffers[i]; /* current */ s = vlib_get_buffer (vm, s->next_buffer); d = vlib_get_buffer (vm, new_buffers[i]); d->current_data = s->current_data; d->current_length = s->current_length; clib_memcpy_fast (vlib_buffer_get_current (d), vlib_buffer_get_current (s), s->current_length); d->flags = s->flags & flag_mask; } return fd; } /** \brief Create a maximum of 256 clones of buffer and store them in the supplied array @param vm - (vlib_main_t *) vlib main data structure pointer @param src_buffer - (u32) source buffer index @param buffers - (u32 * ) buffer index array @param n_buffers - (u16) number of buffer clones requested (<=256) @param head_end_offset - (u16) offset relative to current position where packet head ends @return - (u16) number of buffers actually cloned, may be less than the number requested or zero */ always_inline u16 vlib_buffer_clone_256 (vlib_main_t * vm, u32 src_buffer, u32 * buffers, u16 n_buffers, u16 head_end_offset) { u16 i; vlib_buffer_t *s = vlib_get_buffer (vm, src_buffer); ASSERT (s->ref_count == 1); ASSERT (n_buffers); ASSERT (n_buffers <= 256); if (s->current_length <= head_end_offset + CLIB_CACHE_LINE_BYTES * 2) { buffers[0] = src_buffer; for (i = 1; i < n_buffers; i++) { vlib_buffer_t *d; d = vlib_buffer_copy (vm, s); if (d == 0) return i; buffers[i] = vlib_get_buffer_index (vm, d); } return n_buffers; } if (PREDICT_FALSE (n_buffers == 1)) { buffers[0] = src_buffer; return 1; } n_buffers = vlib_buffer_alloc_from_pool (vm, buffers, n_buffers, s->buffer_pool_index); for (i = 0; i < n_buffers; i++) { vlib_buffer_t *d = vlib_get_buffer (vm, buffers[i]); d->current_data = s->current_data; d->current_length = head_end_offset; ASSERT (d->buffer_pool_index == s->buffer_pool_index); d->total_length_not_including_first_buffer = s->current_length - head_end_offset; if (PREDICT_FALSE (s->flags & VLIB_BUFFER_NEXT_PRESENT)) { d->total_length_not_including_first_buffer += s->total_length_not_including_first_buffer; } d->flags = s->flags | VLIB_BUFFER_NEXT_PRESENT; d->flags &= ~VLIB_BUFFER_EXT_HDR_VALID; clib_memcpy_fast (d->opaque, s->opaque, sizeof (s->opaque)); clib_memcpy_fast (d->opaque2, s->opaque2, sizeof (s->opaque2)); clib_memcpy_fast (vlib_buffer_get_current (d), vlib_buffer_get_current (s), head_end_offset); d->next_buffer = src_buffer; } vlib_buffer_advance (s, head_end_offset); s->ref_count = n_buffers; while (s->flags & VLIB_BUFFER_NEXT_PRESENT) { s = vlib_get_buffer (vm, s->next_buffer); s->ref_count = n_buffers; } return n_buffers; } /** \brief Create multiple clones of buffer and store them in the supplied array @param vm - (vlib_main_t *) vlib main data structure pointer @param src_buffer - (u32) source buffer index @param buffers - (u32 * ) buffer index array @param n_buffers - (u16) number of buffer clones requested (<=256) @param head_end_offset - (u16) offset relative to current position where packet head ends @return - (u16) number of buffers actually cloned, may be less than the number requested or zero */ always_inline u16 vlib_buffer_clone (vlib_main_t * vm, u32 src_buffer, u32 * buffers, u16 n_buffers, u16 head_end_offset) { vlib_buffer_t *s = vlib_get_buffer (vm, src_buffer); u16 n_cloned = 0; while (n_buffers > 256) { vlib_buffer_t *copy; copy = vlib_buffer_copy (vm, s); n_cloned += vlib_buffer_clone_256 (vm, vlib_get_buffer_index (vm, copy), (buffers + n_cloned), 256, head_end_offset); n_buffers -= 256; } n_cloned += vlib_buffer_clone_256 (vm, src_buffer, buffers + n_cloned, n_buffers, head_end_offset); return n_cloned; } /** \brief Attach cloned tail to the buffer @param vm - (vlib_main_t *) vlib main data structure pointer @param head - (vlib_buffer_t *) head buffer @param tail - (Vlib buffer_t *) tail buffer to clone and attach to head */ always_inline void vlib_buffer_attach_clone (vlib_main_t * vm, vlib_buffer_t * head, vlib_buffer_t * tail) { ASSERT ((head->flags & VLIB_BUFFER_NEXT_PRESENT) == 0); ASSERT (head->buffer_pool_index == tail->buffer_pool_index); head->flags |= VLIB_BUFFER_NEXT_PRESENT; head->flags &= ~VLIB_BUFFER_TOTAL_LENGTH_VALID; head->flags &= ~VLIB_BUFFER_EXT_HDR_VALID; head->flags |= (tail->flags & VLIB_BUFFER_TOTAL_LENGTH_VALID); head->next_buffer = vlib_get_buffer_index (vm, tail); head->total_length_not_including_first_buffer = tail->current_length + tail->total_length_not_including_first_buffer; next_segment: clib_atomic_add_fetch (&tail->ref_count, 1); if (tail->flags & VLIB_BUFFER_NEXT_PRESENT) { tail = vlib_get_buffer (vm, tail->next_buffer); goto next_segment; } } /* Initializes the buffer as an empty packet with no chained buffers. */ always_inline void vlib_buffer_chain_init (vlib_buffer_t * first) { first->total_length_not_including_first_buffer = 0; first->current_length = 0; first->flags &= ~VLIB_BUFFER_NEXT_PRESENT; first->flags |= VLIB_BUFFER_TOTAL_LENGTH_VALID; } /* The provided next_bi buffer index is appended to the end of the packet. */ always_inline vlib_buffer_t * vlib_buffer_chain_buffer (vlib_main_t * vm, vlib_buffer_t * last, u32 next_bi) { vlib_buffer_t *next_buffer = vlib_get_buffer (vm, next_bi); last->next_buffer = next_bi; last->flags |= VLIB_BUFFER_NEXT_PRESENT; next_buffer->current_length = 0; next_buffer->flags &= ~VLIB_BUFFER_NEXT_PRESENT; return next_buffer; } /* Increases or decreases the packet length. * It does not allocate or deallocate new buffers. * Therefore, the added length must be compatible * with the last buffer. */ always_inline void vlib_buffer_chain_increase_length (vlib_buffer_t * first, vlib_buffer_t * last, i32 len) { last->current_length += len; if (first != last) first->total_length_not_including_first_buffer += len; } /* Copy data to the end of the packet and increases its length. * It does not allocate new buffers. * Returns the number of copied bytes. */ always_inline u16 vlib_buffer_chain_append_data (vlib_main_t * vm, vlib_buffer_t * first, vlib_buffer_t * last, void *data, u16 data_len) { u32 n_buffer_bytes = vlib_buffer_get_default_data_size (vm); ASSERT (n_buffer_bytes >= last->current_length + last->current_data); u16 len = clib_min (data_len, n_buffer_bytes - last->current_length - last->current_data); clib_memcpy_fast (vlib_buffer_get_current (last) + last->current_length, data, len); vlib_buffer_chain_increase_length (first, last, len); return len; } /* Copy data to the end of the packet and increases its length. * Allocates additional buffers from the free list if necessary. * Returns the number of copied bytes. * 'last' value is modified whenever new buffers are allocated and * chained and points to the last buffer in the chain. */ u16 vlib_buffer_chain_append_data_with_alloc (vlib_main_t * vm, vlib_buffer_t * first, vlib_buffer_t ** last, void *data, u16 data_len); void vlib_buffer_chain_validate (vlib_main_t * vm, vlib_buffer_t * first); format_function_t format_vlib_buffer, format_vlib_buffer_and_data, format_vlib_buffer_contents; typedef struct { /* Vector of packet data. */ u8 *packet_data; /* Number of buffers to allocate in each call to allocator. */ u32 min_n_buffers_each_alloc; u8 *name; } vlib_packet_template_t; void vlib_packet_template_init (vlib_main_t * vm, vlib_packet_template_t * t, void *packet_data, uword n_packet_data_bytes, uword min_n_buffers_each_alloc, char *fmt, ...); void *vlib_packet_template_get_packet (vlib_main_t * vm, vlib_packet_template_t * t, u32 * bi_result); always_inline void vlib_packet_template_free (vlib_main_t * vm, vlib_packet_template_t * t) { vec_free (t->packet_data); } /** * @brief compress buffer chain in a way where the first buffer is at least * VLIB_BUFFER_CLONE_HEAD_SIZE long * * @param[in] vm - vlib_main * @param[in,out] first - first buffer in chain * @param[in,out] discard_vector - vector of buffer indexes which were removed * from the chain */ always_inline void vlib_buffer_chain_compress (vlib_main_t * vm, vlib_buffer_t * first, u32 ** discard_vector) { if (first->current_length >= VLIB_BUFFER_CLONE_HEAD_SIZE || !(first->flags & VLIB_BUFFER_NEXT_PRESENT)) { /* this is already big enough or not a chain */ return; } u32 want_first_size = clib_min (VLIB_BUFFER_CLONE_HEAD_SIZE, vlib_buffer_get_default_data_size (vm) - first->current_data); do { vlib_buffer_t *second = vlib_get_buffer (vm, first->next_buffer); u32 need = want_first_size - first->current_length; u32 amount_to_copy = clib_min (need, second->current_length); clib_memcpy_fast (((u8 *) vlib_buffer_get_current (first)) + first->current_length, vlib_buffer_get_current (second), amount_to_copy); first->current_length += amount_to_copy; second->current_data += amount_to_copy; second->current_length -= amount_to_copy; if (first->flags & VLIB_BUFFER_TOTAL_LENGTH_VALID) { first->total_length_not_including_first_buffer -= amount_to_copy; } if (!second->current_length) { vec_add1 (*discard_vector, first->next_buffer); if (second->flags & VLIB_BUFFER_NEXT_PRESENT) { first->next_buffer = second->next_buffer; } else { first->flags &= ~VLIB_BUFFER_NEXT_PRESENT; } second->flags &= ~VLIB_BUFFER_NEXT_PRESENT; } } while ((first->current_length < want_first_size) && (first->flags & VLIB_BUFFER_NEXT_PRESENT)); } /** * @brief linearize buffer chain - the first buffer is filled, if needed, * buffers are allocated and filled, returns free space in last buffer or * negative on failure * * @param[in] vm - vlib_main * @param[in,out] first - first buffer in chain */ always_inline int vlib_buffer_chain_linearize (vlib_main_t * vm, vlib_buffer_t * first) { vlib_buffer_t *b = first; u32 buf_len = vlib_buffer_get_default_data_size (vm); // free buffer chain starting from the second buffer int free_count = (b->flags & VLIB_BUFFER_NEXT_PRESENT) != 0; u32 chain_to_free = b->next_buffer; u32 len = vlib_buffer_length_in_chain (vm, b); u32 free_len = buf_len - b->current_data - b->current_length; int alloc_len = clib_max (len - free_len, 0); //use the free len in the first buffer int n_buffers = (alloc_len + buf_len - 1) / buf_len; u32 new_buffers[n_buffers]; u32 n_alloc = vlib_buffer_alloc (vm, new_buffers, n_buffers); if (n_alloc != n_buffers) { vlib_buffer_free_no_next (vm, new_buffers, n_alloc); return -1; } vlib_buffer_t *s = b; while (s->flags & VLIB_BUFFER_NEXT_PRESENT) { s = vlib_get_buffer (vm, s->next_buffer); int d_free_len = buf_len - b->current_data - b->current_length; ASSERT (d_free_len >= 0); // chain buf and split write u32 copy_len = clib_min (d_free_len, s->current_length); u8 *d = vlib_buffer_put_uninit (b, copy_len); clib_memcpy (d, vlib_buffer_get_current (s), copy_len); int rest = s->current_length - copy_len; if (rest > 0) { //prev buf is full ASSERT (vlib_buffer_get_tail (b) == b->data + buf_len); ASSERT (n_buffers > 0); b = vlib_buffer_chain_buffer (vm, b, new_buffers[--n_buffers]); //make full use of the new buffers b->current_data = 0; d = vlib_buffer_put_uninit (b, rest); clib_memcpy (d, vlib_buffer_get_current (s) + copy_len, rest); } } vlib_buffer_free (vm, &chain_to_free, free_count); b->flags &= ~VLIB_BUFFER_TOTAL_LENGTH_VALID; if (b == first) /* no buffers addeed */ b->flags &= ~VLIB_BUFFER_NEXT_PRESENT; ASSERT (len == vlib_buffer_length_in_chain (vm, first)); ASSERT (n_buffers == 0); return buf_len - b->current_data - b->current_length; } #endif /* included_vlib_buffer_funcs_h */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */