aboutsummaryrefslogtreecommitdiffstats
path: root/vpp-api/java/Readme.txt
blob: 689b9b37a46029c8019f8df386de0150e714a773 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
= JVpp

JVpp is JNI based Java API for VPP.

== Features
It is:

* Asynchronous
* Fully generated
* Lightweight

== Architecture

=== Plugin support

  /-------------\        /--------------\          /---------------\
  | JvppPlugin1 +<-------+ JVppRegistry +--------->+ VppConnection |
  \-------------/  inits \--+-----------/   uses   \---------------/
                            |
  /-------------\           |
  | JvppPlugin2 +<----------+ inits
  \-------------/           |
                            |
  ...                       |
                            |
  /----------\              |
  | JVppCore +<-------------+
  \----------/


VppRegistry opens connection to vpp (VppConnection) and manages jvpp plugins.
Each plugin needs to be registered in the VppRegistry. Registration involves
plugin initialization (providing JNI implementation with JVppCallback reference,
vpp client identifier and vpp shared memory queue address).

API user sends message by calling a method of appropriate plugin interface.
The call is delegated to JNI implementation provided by the particular plugin.
When JNI code receives reply, it invokes callback method of JVppCallback
that corresponds to the received message reply.

=== JVppCore as an example of JVpp plugin architecture

 JVpp Java

  /--------------\             /----------\          /------------\    /------\
  | JVppRegistry |             | JVppCore |          |  Callbacks |    | DTOs |
  \----+---------/             \----+-----/          \------+-----/    \------/
       ^                            ^                       ^
       | implements                 | implements            | implements
  /----+--------------\         /---+----------\      /-----+---------\
  | JVppRegistryImpl* +-------->+ JVppCoreImpl |      |  JVppCallback |
  \-------+-----------/  inits  \---+----------/      \-------+-------/
          |                          |                       ^
          |                          | uses                  | calls back
          |                          |                       |
----------|--------------------------|-----------------------|---------------------
          |                          |                       |
 C JNI    |                          +-------------------+   |       /-----------------\
          v                                              |   |   +-->+ jvpp_core_gen.h |
  /--------+--------\                                    |   |   |   \-----------------/
  | jpp_registry.c* +---+   /--------+----+----\         |   |   |
  \-----------------/   |   | << shared lib >> |        /-+--+---+------\
                        + ->+   jvpp_common*   <--------+  jvpp_core.c* |
                      uses  \------------------/  uses  \---------------/


* Components marked with an asterisk contain manually crafted code, which in addition
to generated classes form jvpp. Exception applies to Callbacks and DTOs, since there are
manually crafted marker interfaces in callback and dto package (dto/JVppRequest, dto/JVppReply,
dto/JVppDump, dto/JVppReplyDump, callback/JVppCallback)

Note: jvpp_core.c calls back the JVppCallback instance with every response. An instance of the
JVppCallback is provided to jvpp_core.c by JVppRegistryImpl on JVppCoreImpl initialization.

Part of the JVpp is also Future facade. It is asynchronous API returning Future objects
on top of low level JVpp. It wraps dump reply messages in one DTO using control_ping message
(provided by JVppRegistry).


Future facade

        /----------------\          /---------------\
        | FutureJVppCore |      +-->+ JVppRegistry* |
        \-----+----------/      |   \---------------/
              ^                 |
              | implements      | uses
              |                 |
     /--------+-------------\   |    /------------------------------\
     | FutureJVppCoreFacade +---+--->+ FutureJVppCoreFacadeCallback |
     \---------+------------/  uses  \-------+----------------------/
               |                             |
---------------|-----------------------------|-------------------------------
               | uses                        | implements
JVpp Java      |                             |
               |                             |
 /----------\  |                             |
 | JVppCore +<-+                             |
 \----+-----/                                |
      ^                                      |
      | implements                           v
 /----+---------\                   /--------+---------------\
 | JVppCoreImpl |                   | JVppCoreGlobalCallback |
 \--------------/                   \------------------------/



Another useful utility of the JVpp is Callback facade. It is asynchronous API
capable of calling specific callback instance (provided when performing a call)
per call.


Callback facade

        /------------------\          /---------------\
        | CallbackJVppCore |      +-->+ JVppRegistry* |
        \-----+------------/      |   \---------------/
              ^                   |
              | implements        | uses
              |                   |
     /--------+---------------\   |    /--------------------------\
     | CallbackJVppCoreFacade +---+--->+ CallbackJVppCoreCallback |
     \---------+--------------/  uses  \-----+--------------------/
               |                             |
---------------|-----------------------------|-------------------------------
               | uses                        | implements
JVpp Java      |                             |
               |                             |
 /----------\  |                             |
 | JVppCore +<-+                             |
 \----+-----/                                |
      ^                                      |
      | implements                           v
 /----+---------\                   /----------+-------------\
 | JVppCoreImpl |                   | JVppCoreGlobalCallback |
 \--------------/                   \------------------------/


== Package structure

* *io.fd.vpp.jvpp* - top level package for generated JVpp interface+ implementation and hand-crafted
VppConnection interface + implementation - packaged as jvpp-registry-version.jar

* *io.fd.vpp.jvpp.[plugin]* - top level package for generated JVpp interface + implementation
+ plugin's API tests - packaged as jvpp-[plugin]-version.jar

** *dto* - package for DTOs generated from VPP API structures + base/marker hand-crafted interfaces
(in case of jvpp-registry)
** *callback* - package for low-level JVpp callbacks and a global callback interface implementing each of
the low-level JVppcallbacks
** *future* - package for future based facade on top of JVpp and callbacks
** *callfacade* - package for callback based facade on top of JVpp and callbacks. Allowing
users to provide callback per request
** *test* - package for JVpp standalone tests. Can also serve as samples for JVpp.

C code is structured into modules:

* *jvpp_common* - shared library that provides jvpp_main_t reference used by jvpp_registry and plugins.

* *jvpp_registry* - native library used by JVppRegistryImpl, responsible for:

** VPP connection open/close
** Rx thread to java thread attach
** control ping message handling

* *jvpp_core* - native library used by jvpp core plugin:
** *jvpp_core.c* - contains hand crafted code for core plugin initialization
** *jvpp_core_gen.h* - contains generated JNI compatible handlers for all requests and replies defined in vpe.api

== Code generators
All of the required code except the base/marker interfaces is generated using
simple python2 code generators. The generators use __defs_vpp_papi.py__ input
file produced by __vppapigen__ from vpe.api file.

=== JNI compatible C code
Produces __jvpp_[plugin]_gen.h__ file containing JNI compatible handlers for each VPP
request and reply.

[NOTE]
====
Source: jvpp_c_gen.py
====

=== Request/Reply DTOs
For all the structures in __defs_vpp_papi.py__ a POJO DTO is produced. Logically,
there are 4 types of DTOs:

* Request - requests that can be sent to VPP and only a single response is expected
* DumpRequest - requests that can be sent to VPP and a stream of responses is expected
* Reply - reply to a simple request or a single response from dump triggered response stream
* ReplyDump - collection of replies from a single dump request
* Notifications/Events - Not implemented yet

[NOTE]
====
Source: dto_gen.py
====

=== JVpp
Produces __JVpp.java__ and __JVppImpl.java__. This is the layer right above JNI compatible C
code.

[NOTE]
====
Source: jvpp_impl_gen.py
====

=== Callbacks
Produces callback interface for each VPP reply + a global callback interface called
__JVpp[plugin]GlobalCallback.java__ aggregating all of the callback interfaces. The JNI
compatible C code expects only a single instance of this global callback and calls
it with every reply.

[NOTE]
====
Source: callback_gen.py
====

=== Future facade
Produces an asynchronous facade on top of JVpp and callbacks, which returns a Future that provides
matching reply once VPP invocation finishes. Sources produced:
__FutureJVpp[plugin].java, FutureJVpp[plugin]Facade.java and FutureJVpp[plugin]Callback.java__

[NOTE]
====
Source: jvpp_future_facade_gen.py
====

=== Callback facade
Similar to future facade, only this facade takes callback objects as part of the invocation
and the callback is called with result once VPP invocation finishes. Sources produced:
__CallbackJVpp[plugin].java, CallbackJVpp[plugin]Facade.java and CallbackJVpp[plugin]Callback.java__

[NOTE]
====
Source: jvpp_callback_facade_gen.py
====
software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. *** Settings *** | Resource | resources/libraries/robot/performance/performance_setup.robot | ... | Force Tags | 3_NODE_SINGLE_LINK_TOPO | PERFTEST | HW_ENV | NDRPDRDISC | ... | NIC_Intel-X710 | ETH | L2XCFWD | SCALE | L2XCBASE | MEMIF | ... | K8S | 1VSWITCH | 2VNF | VPP_AGENT | SFC_CONTROLLER | HORIZONTAL | ... | Suite Setup | Set up 3-node performance topology with DUT's NIC model | ... | L2 | Intel-X710 | ... | Test Setup | Set up performance test with Ligato Kubernetes | ... | Suite Teardown | Tear down 3-node performance topology | ... | Test Teardown | Tear down performance test with Ligato Kubernetes | ... | Documentation | *RFC2544: Pkt throughput L2XC test cases* | ... | ... | *[Top] Network Topologies:* TG-DUT1-DUT2-TG 3-node circular topology | ... | with single links between nodes. | ... | *[Enc] Packet Encapsulations:* Eth-IPv4 for L2 cross connect. | ... | *[Cfg] DUT configuration:* DUT1 and DUT2 are configured with L2 cross- | ... | connect. DUT1 and DUT2 tested with 2p10GE NIC X710 by Intel. | ... | VNF Containers are connected to VSWITCH container via Memif interface. | ... | All containers are running same VPP version. Containers are deployed | ... | with Kubernetes. Configuration is applied by vnf-agent. | ... | *[Ver] TG verification:* TG finds and reports throughput NDR (Non Drop | ... | Rate) with zero packet loss tolerance or throughput PDR (Partial Drop | ... | Rate) with non-zero packet loss tolerance (LT) expressed in percentage | ... | of packets transmitted. NDR and PDR are discovered for different | ... | Ethernet L2 frame sizes using either binary search or linear search | ... | algorithms with configured starting rate and final step that determines | ... | throughput measurement resolution. Test packets are generated by TG on | ... | links to DUTs. TG traffic profile contains two L3 flow-groups | ... | (flow-group per direction, 254 flows per flow-group) with all packets | ... | containing Ethernet header, IPv4 header with IP protocol=61 and static | ... | payload. MAC addresses are matching MAC addresses of the TG node | ... | interfaces. | ... | *[Ref] Applicable standard specifications:* RFC2544. *** Variables *** # X710 bandwidth limit | ${s_limit} | ${10000000000} # SFC profile | ${sfc_profile} | configmaps/eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz # Traffic profile: | ${traffic_profile} | trex-sl-3n-ethip4-ip4src254 # CPU settings | ${system_cpus}= | ${1} | ${vswitch_cpus}= | ${5} | ${vnf_cpus}= | ${2} *** Keywords *** | Create Kubernetes VSWITCH startup config on all DUTs | | [Documentation] | Create base startup configuration of VSWITCH in Kubernetes | | ... | deploy to all DUTs. | | ... | | ... | *Arguments:* | | ... | - ${framesize} - L2 framesize. Type: integer | | ... | - ${wt} - Worker threads. Type: integer | | ... | - ${rxq} - RX queues. Type: integer | | ... | | ... | *Example:* | | ... | | ... | \| Create Kubernetes VSWITCH startup config on all DUTs \| ${64} \ | | ... | \| ${1} \| ${1} | | ... | | [Arguments] | ${framesize} | ${wt} | ${rxq} | | ${dut1_numa}= | Get interfaces numa node | ${dut1} | | ... | ${dut1_if1} | ${dut1_if2} | | ${dut2_numa}= | Get interfaces numa node | ${dut2} | | ... | ${dut2_if1} | ${dut2_if2} | | ${dut1_if1_pci}= | Get Interface PCI Addr | ${dut1} | ${dut1_if1} | | ${dut1_if2_pci}= | Get Interface PCI Addr | ${dut1} | ${dut1_if2} | | ${dut2_if1_pci}= | Get Interface PCI Addr | ${dut2} | ${dut2_if1} | | ${dut2_if2_pci}= | Get Interface PCI Addr | ${dut2} | ${dut2_if2} | | ${cpu_cnt}= | Evaluate | ${wt}+1 | | ${config}= | Run keyword | Create Kubernetes VSWITCH startup config | | ... | node=${dut1} | cpu_cnt=${cpu_cnt} | cpu_node=${dut1_numa} | | ... | cpu_skip=${system_cpus} | smt_used=${False} | | ... | filename=/tmp/vswitch.conf | framesize=${framesize} | rxq=${rxq} | | ... | if1=${dut1_if1_pci} | if2=${dut1_if2_pci} | | ${config}= | Run keyword | Create Kubernetes VSWITCH startup config | | ... | node=${dut2} | cpu_cnt=${cpu_cnt} | cpu_node=${dut2_numa} | | ... | cpu_skip=${system_cpus} | smt_used=${False} | | ... | filename=/tmp/vswitch.conf | framesize=${framesize} | rxq=${rxq} | | ... | if1=${dut2_if1_pci} | if2=${dut2_if2_pci} | Create Kubernetes VNF'${i}' startup config on all DUTs | | [Documentation] | Create base startup configuration of VNF in Kubernetes | | ... | deploy to all DUTs. | | ... | | ${i_int}= | Convert To Integer | ${i} | | ${cpu_skip}= | Evaluate | ${vswitch_cpus}+${system_cpus} | | ${dut1_numa}= | Get interfaces numa node | ${dut1} | | ... | ${dut1_if1} | ${dut1_if2} | | ${dut2_numa}= | Get interfaces numa node | ${dut2} | | ... | ${dut2_if1} | ${dut2_if2} | | ${config}= | Run keyword | Create Kubernetes VNF startup config | | ... | node=${dut1} | cpu_cnt=${vnf_cpus} | cpu_node=${dut1_numa} | | ... | cpu_skip=${cpu_skip} | smt_used=${False} | filename=/tmp/vnf${i}.conf | | ... | i=${i_int} | | ${config}= | Run keyword | Create Kubernetes VNF startup config | | ... | node=${dut2} | cpu_cnt=${vnf_cpus} | cpu_node=${dut2_numa} | | ... | cpu_skip=${cpu_skip} | smt_used=${False} | filename=/tmp/vnf${i}.conf | | ... | i=${i_int} | L2 Cross Connect Binary Search | | ... | | [Arguments] | ${framesize} | ${min_rate} | ${wt} | ${rxq} | ${search_type} | | ... | | # Test Variables required for test execution and test teardown | | Set Test Variable | ${framesize} | | ${get_framesize}= | Get Frame Size | ${framesize} | | ${max_rate}= | Calculate pps | ${s_limit} | ${get_framesize} | | Set Test Variable | ${min_rate} | | ${binary_min}= | Set Variable | ${min_rate} | | ${binary_max}= | Set Variable | ${max_rate} | | ${threshold}= | Set Variable | ${min_rate} | | ${dut1_if1_name}= | Get interface name | ${dut1} | ${dut1_if1} | | ${dut1_if2_name}= | Get interface name | ${dut1} | ${dut1_if2} | | ${dut2_if1_name}= | Get interface name | ${dut2} | ${dut2_if1} | | ${dut2_if2_name}= | Get interface name | ${dut2} | ${dut2_if2} | | Create Kubernetes VSWITCH startup config on all DUTs | ${get_framesize} | | ... | ${wt} | ${rxq} | | Create Kubernetes VNF'1' startup config on all DUTs | | Create Kubernetes VNF'2' startup config on all DUTs | | Create Kubernetes CM from file on all DUTs | ${nodes} | csit | | ... | name=vswitch-vpp-cfg | vpp.conf=/tmp/vswitch.conf | | Create Kubernetes CM from file on all DUTs | ${nodes} | csit | | ... | name=vnf1-vpp-cfg | vpp.conf=/tmp/vnf1.conf | | Create Kubernetes CM from file on all DUTs | ${nodes} | csit | | ... | name=vnf2-vpp-cfg | vpp.conf=/tmp/vnf2.conf | | Apply Kubernetes resource on node | ${dut1} | | ... | pods/contiv-vnf.yaml | $$VNF$$=vnf1 | | Apply Kubernetes resource on node | ${dut2} | | ... | pods/contiv-vnf.yaml | $$VNF$$=vnf1 | | Apply Kubernetes resource on node | ${dut1} | | ... | pods/contiv-vnf.yaml | $$VNF$$=vnf2 | | Apply Kubernetes resource on node | ${dut2} | | ... | pods/contiv-vnf.yaml | $$VNF$$=vnf2 | | Apply Kubernetes resource on node | ${dut1} | | ... | ${sfc_profile}.yaml | $$TEST_NAME$$=${TEST NAME} | | ... | $$VSWITCH_IF1$$=${dut1_if1_name} | | ... | $$VSWITCH_IF2$$=${dut1_if2_name} | | Apply Kubernetes resource on node | ${dut2} | | ... | ${sfc_profile}.yaml | $$TEST_NAME$$=${TEST NAME} | | ... | $$VSWITCH_IF1$$=${dut2_if1_name} | | ... | $$VSWITCH_IF2$$=${dut2_if2_name} | | Wait for Kubernetes PODs on all DUTs | ${nodes} | csit | | Set Kubernetes PODs affinity on all DUTs | ${nodes} | | Run Keyword If | '${search_type}' == 'NDR' | | ... | Find NDR using binary search and pps | | ... | ${framesize} | ${binary_min} | ${binary_max} | ${traffic_profile} | | ... | ${min_rate} | ${max_rate} | ${threshold} | | ... | ELSE IF | '${search_type}' == 'PDR' | | ... | Find PDR using binary search and pps | | ... | ${framesize} | ${binary_min} | ${binary_max} | ${traffic_profile} | | ... | ${min_rate} | ${max_rate} | ${threshold} | | ... | ${perf_pdr_loss_acceptance} | ${perf_pdr_loss_acceptance_type} *** Test Cases *** | tc01-64B-1t1c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-ndrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find NDR for 64 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps. | | ... | | [Tags] | 64B | 1C | NDRDISC | | [Template] | L2 Cross Connect Binary Search | | framesize=${64} | min_rate=${50000} | wt=1 | rxq=1 | search_type=NDR | tc02-64B-1t1c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-pdrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find PDR for 64 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps, LT=0.5%. | | ... | | [Tags] | 64B | 1C | PDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=${64} | min_rate=${50000} | wt=1 | rxq=1 | search_type=PDR | tc03-IMIX-1t1c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-ndrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find NDR for IMIX_v4_1 frames using binary search start at 10GE\ | | ... | linerate, step 50kpps. | | ... | IMIX_v4_1 = (28x64B;16x570B;4x1518B) | | ... | | [Tags] | IMIX | 1C | NDRDISC | | [Template] | L2 Cross Connect Binary Search | | framesize=IMIX_v4_1 | min_rate=${50000} | wt=1 | rxq=1 | search_type=NDR | tc04-IMIX-1t1c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-pdrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find PDR for IMIX_v4_1 frames using binary search start at 10GE\ | | ... | linerate, step 50kpps, LT=0.5%. | | ... | IMIX_v4_1 = (28x64B;16x570B;4x1518B) | | ... | | [Tags] | IMIX | 1C | PDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=IMIX_v4_1 | min_rate=${50000} | wt=1 | rxq=1 | search_type=PDR | tc05-1518B-1t1c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-ndrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find NDR for 1518 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps. | | ... | | [Tags] | 1518B | 1C | NDRDISC | | [Template] | L2 Cross Connect Binary Search | | framesize=${1518} | min_rate=${50000} | wt=1 | rxq=1 | search_type=NDR | tc06-1518B-1t1c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-pdrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find PDR for 1518 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps, LT=0.5%. | | ... | | [Tags] | 1518B | 1C | PDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=${1518} | min_rate=${50000} | wt=1 | rxq=1 | search_type=PDR | tc07-64B-2t2c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-ndrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 2 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find NDR for 64 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps. | | ... | | [Tags] | 64B | 2C | NDRDISC | | [Template] | L2 Cross Connect Binary Search | | framesize=${64} | min_rate=${50000} | wt=2 | rxq=1 | search_type=NDR | tc08-64B-2t2c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-pdrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 2 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find PDR for 64 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps, LT=0.5%. | | ... | | [Tags] | 64B | 2C | PDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=${64} | min_rate=${50000} | wt=2 | rxq=1 | search_type=PDR | tc09-IMIX-2t2c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-ndrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 2 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find NDR for IMIX_v4_1 frames using binary search start at 10GE\ | | ... | linerate, step 50kpps. | | ... | IMIX_v4_1 = (28x64B;16x570B;4x1518B) | | ... | | [Tags] | IMIX | 2C | NDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=IMIX_v4_1 | min_rate=${50000} | wt=2 | rxq=1 | search_type=NDR | tc10-IMIX-2t2c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-pdrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find PDR for IMIX_v4_1 frames using binary search start at 10GE\ | | ... | linerate, step 50kpps, LT=0.5%. | | ... | IMIX_v4_1 = (28x64B;16x570B;4x1518B) | | ... | | [Tags] | IMIX | 2C | PDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=IMIX_v4_1 | min_rate=${50000} | wt=2 | rxq=1 | search_type=PDR | tc11-1518B-2t2c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-ndrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find NDR for 1518 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps. | | ... | | [Tags] | 1518B | 2C | NDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=${1518} | min_rate=${50000} | wt=2 | rxq=1 | search_type=NDR | tc12-1518B-2t2c-eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz-k8s-pdrdisc | | [Documentation] | | ... | [Cfg] DUT runs L2XC switching config with 1 phy core,\ | | ... | 1 receive queue per NIC port. | | ... | [Ver] Find PDR for 1518 Byte frames using binary search start at 10GE\ | | ... | linerate, step 50kpps, LT=0.5%. | | ... | | [Tags] | 1518B | 2C | PDRDISC | SKIP_PATCH | | [Template] | L2 Cross Connect Binary Search | | framesize=${1518} | min_rate=${50000} | wt=2 | rxq=1 | search_type=PDR