aboutsummaryrefslogtreecommitdiffstats
path: root/resources/libraries/python
diff options
context:
space:
mode:
Diffstat (limited to 'resources/libraries/python')
-rw-r--r--resources/libraries/python/Constants.py12
-rw-r--r--resources/libraries/python/TrafficGenerator.py4
2 files changed, 14 insertions, 2 deletions
diff --git a/resources/libraries/python/Constants.py b/resources/libraries/python/Constants.py
index 443bdfc646..f2191a9211 100644
--- a/resources/libraries/python/Constants.py
+++ b/resources/libraries/python/Constants.py
@@ -269,6 +269,18 @@ class Constants:
# Whether to use latency streams in main search trials.
PERF_USE_LATENCY = get_pessimistic_bool_from_env("PERF_USE_LATENCY")
+ # Whether to apply low-load trial to avoid flooding other machines.
+ INFRA_WARMUP_DURATION = get_float_from_env("INFRA_WARMUP_DURATION", 0)
+
+ # Load just high enough to show all MAC addresses.
+ INFRA_WARMUP_RATE = get_float_from_env("INFRA_WARMUP_RATE", 300.0)
+
+ # Whether to warm-up the traffic generator with high load.
+ TG_WARMUP_DURATION = get_float_from_env("TG_WARMUP_DURATION", 1.0)
+
+ ## TG warmup load tweaking should not be needed, default max rate is best.
+ #TG_WARMUP_RATE = get_float_from_env("TG_WARMUP_RATE")
+
# Duration of one latency-specific trial in NDRPDR test.
PERF_TRIAL_LATENCY_DURATION = get_float_from_env(
"PERF_TRIAL_LATENCY_DURATION", 5.0
diff --git a/resources/libraries/python/TrafficGenerator.py b/resources/libraries/python/TrafficGenerator.py
index ae01f8d3a6..fe9db3cb72 100644
--- a/resources/libraries/python/TrafficGenerator.py
+++ b/resources/libraries/python/TrafficGenerator.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2024 Cisco and/or its affiliates.
+# Copyright (c) 2025 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
@@ -1590,7 +1590,7 @@ class OptimizedSearch:
config.min_load = min_load
config.max_load = max_load
config.search_duration_max = search_duration_max
- config.warmup_duration = 1.0
+ config.warmup_duration = 0.0
algorithm = MultipleLossRatioSearch(config)
results = algorithm.search(measurer=tg_instance, debug=logger.debug)
return [results[goal] for goal in goals]