aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/news/layout.py
blob: ba4fc85163735a9ed461f1a6c120f44eeb5ba592 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# Copyright (c) 2024 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Plotly Dash HTML layout override.
"""

import pandas as pd
import dash_bootstrap_components as dbc

from flask import Flask
from dash import dcc
from dash import html
from dash import callback_context
from dash import Input, Output, State

from ..utils.constants import Constants as C
from ..utils.utils import gen_new_url, navbar_trending
from ..utils.anomalies import classify_anomalies
from ..utils.url_processing import url_decode
from .tables import table_summary


class Layout:
    """The layout of the dash app and the callbacks.
    """

    def __init__(
            self,
            app: Flask,
            data_stats: pd.DataFrame,
            data_trending: pd.DataFrame,
            html_layout_file: str
        ) -> None:
        """Initialization:
        - save the input parameters,
        - read and pre-process the data,
        - prepare data for the control panel,
        - read HTML layout file,
        - read tooltips from the tooltip file.

        :param app: Flask application running the dash application.
        :param data_stats: Pandas dataframe with staistical data.
        :param data_trending: Pandas dataframe with trending data.
        :param html_layout_file: Path and name of the file specifying the HTML
            layout of the dash application.
        :type app: Flask
        :type data_stats: pandas.DataFrame
        :type data_trending: pandas.DataFrame
        :type html_layout_file: str
        """

        # Inputs
        self._app = app
        self._html_layout_file = html_layout_file

        # Prepare information for the control panel:
        self._jobs = sorted(list(data_trending["job"].unique()))
        d_job_info = {
            "job": list(),
            "dut": list(),
            "ttype": list(),
            "cadence": list(),
            "tbed": list()
        }
        for job in self._jobs:
            lst_job = job.split("-")
            d_job_info["job"].append(job)
            d_job_info["dut"].append(lst_job[1])
            d_job_info["ttype"].append(lst_job[3])
            d_job_info["cadence"].append(lst_job[4])
            d_job_info["tbed"].append("-".join(lst_job[-2:]))
        self.job_info = pd.DataFrame.from_dict(d_job_info)

        # Pre-process the data:

        def _create_test_name(test: str) -> str:
            lst_tst = test.split(".")
            suite = lst_tst[-2].replace("2n1l-", "").replace("1n1l-", "").\
                replace("2n-", "")
            return f"{suite.split('-')[0]}-{lst_tst[-1]}"

        def _get_rindex(array: list, itm: any) -> int:
            return len(array) - 1 - array[::-1].index(itm)

        tst_info = {
            "job": list(),
            "build": list(),
            "start": list(),
            "dut_type": list(),
            "dut_version": list(),
            "hosts": list(),
            "failed": list(),
            "regressions": list(),
            "progressions": list()
        }
        for job in self._jobs:
            # Create lists of failed tests:
            df_job = data_trending.loc[(data_trending["job"] == job)]
            last_build = str(max(pd.to_numeric(df_job["build"].unique())))
            df_build = df_job.loc[(df_job["build"] == last_build)]
            tst_info["job"].append(job)
            tst_info["build"].append(last_build)
            tst_info["start"].append(data_stats.loc[
                (data_stats["job"] == job) &
                (data_stats["build"] == last_build)
            ]["start_time"].iloc[-1].strftime('%Y-%m-%d %H:%M'))
            tst_info["dut_type"].append(df_build["dut_type"].iloc[-1])
            tst_info["dut_version"].append(df_build["dut_version"].iloc[-1])
            tst_info["hosts"].append(df_build["hosts"].iloc[-1])
            failed_tests = df_build.loc[(df_build["passed"] == False)]\
                ["test_id"].to_list()
            l_failed = list()
            try:
                for tst in failed_tests:
                    l_failed.append(_create_test_name(tst))
            except KeyError:
                l_failed = list()
            tst_info["failed"].append(sorted(l_failed))

            # Create lists of regressions and progressions:
            l_reg = list()
            l_prog = list()

            tests = df_job["test_id"].unique()
            for test in tests:
                tst_data = df_job.loc[(
                    (df_job["test_id"] == test) &
                    (df_job["passed"] == True)
                )].sort_values(by="start_time", ignore_index=True)
                if "-ndrpdr" in test:
                    tst_data = tst_data.dropna(
                        subset=["result_pdr_lower_rate_value", ]
                    )
                    if tst_data.empty:
                        continue
                    x_axis = tst_data["start_time"].tolist()
                    try:
                        anomalies, _, _ = classify_anomalies({
                            k: v for k, v in zip(
                                x_axis,
                                tst_data["result_ndr_lower_rate_value"].tolist()
                            )
                        })
                    except ValueError:
                        continue
                    if "progression" in anomalies:
                        l_prog.append((
                            _create_test_name(test).replace("-ndrpdr", "-ndr"),
                            x_axis[_get_rindex(anomalies, "progression")]
                        ))
                    if "regression" in anomalies:
                        l_reg.append((
                            _create_test_name(test).replace("-ndrpdr", "-ndr"),
                            x_axis[_get_rindex(anomalies, "regression")]
                        ))
                    try:
                        anomalies, _, _ = classify_anomalies({
                            k: v for k, v in zip(
                                x_axis,
                                tst_data["result_pdr_lower_rate_value"].tolist()
                            )
                        })
                    except ValueError:
                        continue
                    if "progression" in anomalies:
                        l_prog.append((
                            _create_test_name(test).replace("-ndrpdr", "-pdr"),
                            x_axis[_get_rindex(anomalies, "progression")]
                        ))
                    if "regression" in anomalies:
                        l_reg.append((
                            _create_test_name(test).replace("-ndrpdr", "-pdr"),
                            x_axis[_get_rindex(anomalies, "regression")]
                        ))
                else:  # mrr, hoststack, soak
                    if "soak" in test:
                        val = "result_critical_rate_lower_rate_value"
                    elif "hoststack" in test:
                        val = "result_rate_value"
                    else:  # mrr
                        val = "result_receive_rate_rate_avg"
                    tst_data = tst_data.dropna(subset=[val, ])
                    if tst_data.empty:
                        continue
                    x_axis = tst_data["start_time"].tolist()
                    try:
                        anomalies, _, _ = classify_anomalies({
                            k: v for k, v in zip(x_axis, tst_data[val].tolist())
                        })
                    except ValueError:
                        continue
                    if "progression" in anomalies:
                        l_prog.append((
                            _create_test_name(test),
                            x_axis[_get_rindex(anomalies, "progression")]
                        ))
                    if "regression" in anomalies:
                        l_reg.append((
                            _create_test_name(test),
                            x_axis[_get_rindex(anomalies, "regression")]
                        ))

            tst_info["regressions"].append(
                sorted(l_reg, key=lambda k: k[1], reverse=True))
            tst_info["progressions"].append(
                sorted(l_prog, key=lambda k: k[1], reverse=True))

        self._data = pd.DataFrame.from_dict(tst_info)

        # Read from files:
        self._html_layout = str()

        try:
            with open(self._html_layout_file, "r") as file_read:
                self._html_layout = file_read.read()
        except IOError as err:
            raise RuntimeError(
                f"Not possible to open the file {self._html_layout_file}\n{err}"
            )

        self._default_period = C.NEWS_SHORT
        self._default_active = (False, True, False)

        # Callbacks:
        if self._app is not None and hasattr(self, 'callbacks'):
            self.callbacks(self._app)

    @property
    def html_layout(self) -> dict:
        return self._html_layout

    def add_content(self):
        """Top level method which generated the web page.

        It generates:
        - Store for user input data,
        - Navigation bar,
        - Main area with control panel and ploting area.

        If no HTML layout is provided, an error message is displayed instead.

        :returns: The HTML div with the whole page.
        :rtype: html.Div
        """

        if self.html_layout:
            return html.Div(
                id="div-main",
                className="small",
                children=[
                    dcc.Location(id="url", refresh=False),
                    dbc.Row(
                        id="row-navbar",
                        class_name="g-0",
                        children=[navbar_trending((False, True, False, False))]
                    ),
                    dbc.Row(
                        id="row-main",
                        class_name="g-0",
                        children=[
                            self._add_ctrl_col(),
                            self._add_plotting_col()
                        ]
                    ),
                    dbc.Offcanvas(
                        class_name="w-75",
                        id="offcanvas-documentation",
                        title="Documentation",
                        placement="end",
                        is_open=False,
                        children=html.Iframe(
                            src=C.URL_DOC_TRENDING,
                            width="100%",
                            height="100%"
                        )
                    )
                ]
            )
        else:
            return html.Div(
                id="div-main-error",
                children=[
                    dbc.Alert(
                        [
                            "An Error Occured"
                        ],
                        color="danger"
                    )
                ]
            )

    def _add_ctrl_col(self) -> dbc.Col:
        """Add column with control panel. It is placed on the left side.

        :returns: Column with the control panel.
        :rtype: dbc.Col
        """
        return dbc.Col([
            html.Div(
                children=self._add_ctrl_panel(),
                className="sticky-top"
            )
        ])

    def _add_plotting_col(self) -> dbc.Col:
        """Add column with tables. It is placed on the right side.

        :returns: Column with tables.
        :rtype: dbc.Col
        """
        return dbc.Col(
            id="col-plotting-area",
            children=[
                dbc.Spinner(
                    children=[
                        dbc.Row(
                            id="plotting-area",
                            class_name="g-0 p-0",
                            children=[
                                C.PLACEHOLDER
                            ]
                        )
                    ]
                )
            ],
            width=9
        )

    def _add_ctrl_panel(self) -> list:
        """Add control panel.

        :returns: Control panel.
        :rtype: list
        """
        return [
            dbc.Row(
                class_name="g-0 p-1",
                children=[
                    dbc.ButtonGroup(
                        id="bg-time-period",
                        children=[
                            dbc.Button(
                                id="period-last",
                                children="Last Run",
                                className="me-1",
                                outline=True,
                                color="info"
                            ),
                            dbc.Button(
                                id="period-short",
                                children=f"Last {C.NEWS_SHORT} Runs",
                                className="me-1",
                                outline=True,
                                active=True,
                                color="info"
                            ),
                            dbc.Button(
                                id="period-long",
                                children="All Runs",
                                className="me-1",
                                outline=True,
                                color="info"
                            )
                        ]
                    )
                ]
            )
        ]

    def _get_plotting_area(
            self,
            period: int,
            url: str
        ) -> list:
        """Generate the plotting area with all its content.

        :param period: The time period for summary tables.
        :param url: URL to be displayed in the modal window.
        :type period: int
        :type url: str
        :returns: The content of the plotting area.
        :rtype: list
        """
        return [
            dbc.Row(
                id="row-table",
                class_name="g-0 p-1",
                children=table_summary(self._data, self._jobs, period)
            ),
            dbc.Row(
                [
                    dbc.Col([html.Div(
                        [
                            dbc.Button(
                                id="plot-btn-url",
                                children="Show URL",
                                class_name="me-1",
                                color="info",
                                style={
                                    "text-transform": "none",
                                    "padding": "0rem 1rem"
                                }
                            ),
                            dbc.Modal(
                                [
                                    dbc.ModalHeader(dbc.ModalTitle("URL")),
                                    dbc.ModalBody(url)
                                ],
                                id="plot-mod-url",
                                size="xl",
                                is_open=False,
                                scrollable=True
                            )
                        ],
                        className=\
                            "d-grid gap-0 d-md-flex justify-content-md-end"
                    )])
                ],
                class_name="g-0 p-0"
            )
        ]

    def callbacks(self, app):
        """Callbacks for the whole application.

        :param app: The application.
        :type app: Flask
        """

        @app.callback(
            Output("plotting-area", "children"),
            Output("period-last", "active"),
            Output("period-short", "active"),
            Output("period-long", "active"),
            Input("url", "href"),
            Input("period-last", "n_clicks"),
            Input("period-short", "n_clicks"),
            Input("period-long", "n_clicks")
        )
        def _update_application(href: str, *_) -> tuple:
            """Update the application when the event is detected.

            :returns: New values for web page elements.
            :rtype: tuple
            """

            periods = {
                "period-last": C.NEWS_LAST,
                "period-short": C.NEWS_SHORT,
                "period-long": C.NEWS_LONG
            }
            actives = {
                "period-last": (True, False, False),
                "period-short": (False, True, False),
                "period-long": (False, False, True)
            }

            # Parse the url:
            parsed_url = url_decode(href)
            if parsed_url:
                url_params = parsed_url["params"]
            else:
                url_params = None

            trigger_id = callback_context.triggered[0]["prop_id"].split(".")[0]
            if trigger_id == "url" and url_params:
                trigger_id = url_params.get("period", list())[0]

            ret_val = [
                self._get_plotting_area(
                    periods.get(trigger_id, self._default_period),
                    gen_new_url(parsed_url, {"period": trigger_id})
                )
            ]
            ret_val.extend(actives.get(trigger_id, self._default_active))
            return ret_val

        @app.callback(
            Output("plot-mod-url", "is_open"),
            Input("plot-btn-url", "n_clicks"),
            State("plot-mod-url", "is_open")
        )
        def toggle_plot_mod_url(n, is_open):
            """Toggle the modal window with url.
            """
            if n:
                return not is_open
            return is_open

        @app.callback(
            Output("offcanvas-documentation", "is_open"),
            Input("btn-documentation", "n_clicks"),
            State("offcanvas-documentation", "is_open")
        )
        def toggle_offcanvas_documentation(n_clicks, is_open):
            if n_clicks:
                return not is_open
            return is_open