aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/news/tables.py
blob: 1e9aefaf04ab87e321deab37acdf1ebeb433fdf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) 2024 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The tables with news.
"""

import pandas as pd
import dash_bootstrap_components as dbc

from datetime import datetime, timedelta


def _table_info(job_data: pd.DataFrame) -> dbc.Table:
    """Generates table with info about the job.

    :param job_data: Dataframe with information about the job.
    :type job_data: pandas.DataFrame
    :returns: Table with job info.
    :rtype: dbc.Table
    """
    return dbc.Table.from_dataframe(
        pd.DataFrame.from_dict(
            {
                "Job": job_data["job"],
                "Last Build": job_data["build"],
                "Date": job_data["start"],
                "DUT": job_data["dut_type"],
                "DUT Version": job_data["dut_version"],
                "Hosts": ", ".join(job_data["hosts"].to_list()[0])
            }
        ),
        bordered=True,
        striped=True,
        hover=True,
        size="sm",
        color="info"
    )


def _table_failed(job_data: pd.DataFrame, failed: list) -> dbc.Table:
    """Generates table with failed tests from the last run of the job.

    :param job_data: Dataframe with information about the job.
    :param failed: List of failed tests.
    :type job_data: pandas.DataFrame
    :type failed: list
    :returns: Table with fialed tests.
    :rtype: dbc.Table
    """
    return dbc.Table.from_dataframe(
        pd.DataFrame.from_dict(
            {
                (
                    f"Last Failed Tests on "
                    f"{job_data['start'].values[0]} ({len(failed)})"
                ): failed
            }
        ),
        bordered=True,
        striped=True,
        hover=True,
        size="sm",
        color="danger"
    )


def _table_gressions(itms: dict, color: str) -> dbc.Table:
    """Generates table with regressions.

    :param itms: Dictionary with items (regressions or progressions) and their
        last occurence.
    :param color: Color of the table.
    :type regressions: dict
    :type color: str
    :returns: The table with regressions.
    :rtype: dbc.Table
    """
    return dbc.Table.from_dataframe(
        pd.DataFrame.from_dict(itms),
        bordered=True,
        striped=True,
        hover=True,
        size="sm",
        color=color
    )


def table_news(data: pd.DataFrame, job: str, period: int) -> list:
    """Generates the tables with news:
    1. Falied tests from the last run
    2. Regressions and progressions calculated from the last C.NEWS_TIME_PERIOD
       days.

    :param data: Trending data with calculated annomalies to be displayed in the
        tables.
    :param job: The job name.
    :param period: The time period (nr of days from now) taken into account.
    :type data: pandas.DataFrame
    :type job: str
    :type period: int
    :returns: List of tables.
    :rtype: list
    """

    last_day = datetime.utcnow() - timedelta(days=period)
    r_list = list()
    job_data = data.loc[(data["job"] == job)]
    r_list.append(_table_info(job_data))

    failed = job_data["failed"].to_list()[0]
    if failed:
        r_list.append(_table_failed(job_data, failed))

    title = f"Regressions in the last {period} days"
    regressions = {title: list(), "Last Regression": list()}
    for itm in job_data["regressions"].to_list()[0]:
        if itm[1] < last_day:
            break
        regressions[title].append(itm[0])
        regressions["Last Regression"].append(
            itm[1].strftime('%Y-%m-%d %H:%M'))
    if regressions["Last Regression"]:
        r_list.append(_table_gressions(regressions, "warning"))

    title = f"Progressions in the last {period} days"
    progressions = {title: list(), "Last Progression": list()}
    for itm in job_data["progressions"].to_list()[0]:
        if itm[1] < last_day:
            break
        progressions[title].append(itm[0])
        progressions["Last Progression"].append(
            itm[1].strftime('%Y-%m-%d %H:%M'))
    if progressions["Last Progression"]:
        r_list.append(_table_gressions(progressions, "success"))

    return r_list


def table_summary(data: pd.DataFrame, jobs: list, period: int) -> list:
    """Generates summary (failed tests, regressions and progressions) from the
    last week.

    :param data: Trending data with calculated annomalies to be displayed in the
        tables.
    :param jobs: List of jobs.
    :params period: The time period for the summary table.
    :type data: pandas.DataFrame
    :type job: str
    :type period: int
    :returns: List of tables.
    :rtype: list
    """

    return [
        dbc.Accordion(
            children=[
                dbc.AccordionItem(
                    title=job,
                    children=table_news(data, job, period)
                ) for job in jobs
            ],
            class_name="gy-2 p-0",
            start_collapsed=True,
            always_open=True
        )
    ]