aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/report/graphs.py
blob: 76aa8b77930c5287f23bfc388fb3d0e861aa75e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
"""

import re
import plotly.graph_objects as go
import pandas as pd

from copy import deepcopy

import hdrh.histogram
import hdrh.codec


_NORM_FREQUENCY = 2.0  # [GHz]
_FREQURENCY = {  # [GHz]
    "2n-aws": 1.000,
    "2n-dnv": 2.000,
    "2n-clx": 2.300,
    "2n-icx": 2.600,
    "2n-skx": 2.500,
    "2n-tx2": 2.500,
    "2n-zn2": 2.900,
    "3n-alt": 3.000,
    "3n-aws": 1.000,
    "3n-dnv": 2.000,
    "3n-icx": 2.600,
    "3n-skx": 2.500,
    "3n-tsh": 2.200
}

_VALUE = {
    "mrr": "result_receive_rate_rate_values",
    "ndr": "result_ndr_lower_rate_value",
    "pdr": "result_pdr_lower_rate_value",
    "pdr-lat": "result_latency_forward_pdr_50_avg"
}
_UNIT = {
    "mrr": "result_receive_rate_rate_unit",
    "ndr": "result_ndr_lower_rate_unit",
    "pdr": "result_pdr_lower_rate_unit",
    "pdr-lat": "result_latency_forward_pdr_50_unit"
}
_LAT_HDRH = (  # Do not change the order
    "result_latency_forward_pdr_0_hdrh",
    "result_latency_reverse_pdr_0_hdrh",
    "result_latency_forward_pdr_10_hdrh",
    "result_latency_reverse_pdr_10_hdrh",
    "result_latency_forward_pdr_50_hdrh",
    "result_latency_reverse_pdr_50_hdrh",
    "result_latency_forward_pdr_90_hdrh",
    "result_latency_reverse_pdr_90_hdrh",
)
# This value depends on latency stream rate (9001 pps) and duration (5s).
# Keep it slightly higher to ensure rounding errors to not remove tick mark.
PERCENTILE_MAX = 99.999501

_GRAPH_LAT_HDRH_DESC = {
    "result_latency_forward_pdr_0_hdrh": "No-load.",
    "result_latency_reverse_pdr_0_hdrh": "No-load.",
    "result_latency_forward_pdr_10_hdrh": "Low-load, 10% PDR.",
    "result_latency_reverse_pdr_10_hdrh": "Low-load, 10% PDR.",
    "result_latency_forward_pdr_50_hdrh": "Mid-load, 50% PDR.",
    "result_latency_reverse_pdr_50_hdrh": "Mid-load, 50% PDR.",
    "result_latency_forward_pdr_90_hdrh": "High-load, 90% PDR.",
    "result_latency_reverse_pdr_90_hdrh": "High-load, 90% PDR."
}


def _get_color(idx: int) -> str:
    """
    """
    _COLORS = (
        "#1A1110", "#DA2647", "#214FC6", "#01786F", "#BD8260", "#FFD12A",
        "#A6E7FF", "#738276", "#C95A49", "#FC5A8D", "#CEC8EF", "#391285",
        "#6F2DA8", "#FF878D", "#45A27D", "#FFD0B9", "#FD5240", "#DB91EF",
        "#44D7A8", "#4F86F7", "#84DE02", "#FFCFF1", "#614051"
    )
    return _COLORS[idx % len(_COLORS)]


def get_short_version(version: str, dut_type: str="vpp") -> str:
    """
    """

    if dut_type in ("trex", "dpdk"):
        return version

    s_version = str()
    groups = re.search(
        pattern=re.compile(r"^(\d{2}).(\d{2})-(rc0|rc1|rc2|release$)"),
        string=version
    )
    if groups:
        try:
            s_version = \
                f"{groups.group(1)}.{groups.group(2)}.{groups.group(3)}".\
                    replace("release", "rls")
        except IndexError:
            pass

    return s_version


def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
    """
    """

    phy = itm["phy"].split("-")
    if len(phy) == 4:
        topo, arch, nic, drv = phy
        if drv == "dpdk":
            drv = ""
        else:
            drv += "-"
            drv = drv.replace("_", "-")
    else:
        return None

    core = str() if itm["dut"] == "trex" else f"{itm['core']}"
    ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
    dut_v100 = "none" if itm["dut"] == "trex" else itm["dut"]
    dut_v101 = itm["dut"]

    df = data.loc[(
        (data["release"] == itm["rls"]) &
        (
            (
                (data["version"] == "1.0.0") &
                (data["dut_type"].str.lower() == dut_v100)
            ) |
            (
                (data["version"] == "1.0.1") &
                (data["dut_type"].str.lower() == dut_v101)
            )
        ) &
        (data["test_type"] == ttype) &
        (data["passed"] == True)
    )]
    regex_test = \
        f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$"
    df = df[
        (df.job.str.endswith(f"{topo}-{arch}")) &
        (df.dut_version.str.contains(itm["dutver"].replace(".r", "-r").\
            replace("rls", "release"))) &
        (df.test_id.str.contains(regex_test, regex=True))
    ]

    return df


def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict,
        normalize: bool) -> tuple:
    """
    """

    fig_tput = None
    fig_lat = None

    tput_traces = list()
    y_tput_max = 0
    lat_traces = list()
    y_lat_max = 0
    x_lat = list()
    show_latency = False
    show_tput = False
    for idx, itm in enumerate(sel):
        itm_data = select_iterative_data(data, itm)
        if itm_data.empty:
            continue
        phy = itm["phy"].split("-")
        topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
        norm_factor = (_NORM_FREQUENCY / _FREQURENCY[topo_arch]) \
            if normalize else 1.0
        if itm["testtype"] == "mrr":
            y_data_raw = itm_data[_VALUE[itm["testtype"]]].to_list()[0]
            y_data = [(y * norm_factor) for y in y_data_raw]
            if len(y_data) > 0:
                y_tput_max = \
                    max(y_data) if max(y_data) > y_tput_max else y_tput_max
        else:
            y_data_raw = itm_data[_VALUE[itm["testtype"]]].to_list()
            y_data = [(y * norm_factor) for y in y_data_raw]
            if y_data:
                y_tput_max = \
                    max(y_data) if max(y_data) > y_tput_max else y_tput_max
        nr_of_samples = len(y_data)
        tput_kwargs = dict(
            y=y_data,
            name=(
                f"{idx + 1}. "
                f"({nr_of_samples:02d} "
                f"run{'s' if nr_of_samples > 1 else ''}) "
                f"{itm['id']}"
            ),
            hoverinfo=u"y+name",
            boxpoints="all",
            jitter=0.3,
            marker=dict(color=_get_color(idx))
        )
        tput_traces.append(go.Box(**tput_kwargs))
        show_tput = True

        if itm["testtype"] == "pdr":
            y_lat_row = itm_data[_VALUE["pdr-lat"]].to_list()
            y_lat = [(y / norm_factor) for y in y_lat_row]
            if y_lat:
                y_lat_max = max(y_lat) if max(y_lat) > y_lat_max else y_lat_max
            nr_of_samples = len(y_lat)
            lat_kwargs = dict(
                y=y_lat,
                name=(
                    f"{idx + 1}. "
                    f"({nr_of_samples:02d} "
                    f"run{u's' if nr_of_samples > 1 else u''}) "
                    f"{itm['id']}"
                ),
                hoverinfo="all",
                boxpoints="all",
                jitter=0.3,
                marker=dict(color=_get_color(idx))
            )
            x_lat.append(idx + 1)
            lat_traces.append(go.Box(**lat_kwargs))
            show_latency = True
        else:
            lat_traces.append(go.Box())

    if show_tput:
        pl_tput = deepcopy(layout["plot-throughput"])
        pl_tput["xaxis"]["tickvals"] = [i for i in range(len(sel))]
        pl_tput["xaxis"]["ticktext"] = [str(i + 1) for i in range(len(sel))]
        if y_tput_max:
            pl_tput["yaxis"]["range"] = [0, (int(y_tput_max / 1e6) + 1) * 1e6]
        fig_tput = go.Figure(data=tput_traces, layout=pl_tput)

    if show_latency:
        pl_lat = deepcopy(layout["plot-latency"])
        pl_lat["xaxis"]["tickvals"] = [i for i in range(len(x_lat))]
        pl_lat["xaxis"]["ticktext"] = x_lat
        if y_lat_max:
            pl_lat["yaxis"]["range"] = [0, (int(y_lat_max / 10) + 1) * 10]
        fig_lat = go.Figure(data=lat_traces, layout=pl_lat)

    return fig_tput, fig_lat


def table_comparison(data: pd.DataFrame, sel:dict,
        normalize: bool) -> pd.DataFrame:
    """
    """
    table = pd.DataFrame(
        {
            "Test Case": [
                "64b-2t1c-avf-eth-l2xcbase-eth-2memif-1dcr",
                "64b-2t1c-avf-eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc",
                "64b-2t1c-avf-ethip4udp-ip4base-iacl50sl-10kflows",
                "78b-2t1c-avf-ethip6-ip6scale2m-rnd "],
            "2106.0-8": [
                "14.45 +- 0.08",
                "9.63 +- 0.05",
                "9.7 +- 0.02",
                "8.95 +- 0.06"],
            "2110.0-8": [
                "14.45 +- 0.08",
                "9.63 +- 0.05",
                "9.7 +- 0.02",
                "8.95 +- 0.06"],
            "2110.0-9": [
                "14.45 +- 0.08",
                "9.63 +- 0.05",
                "9.7 +- 0.02",
                "8.95 +- 0.06"],
            "2202.0-9": [
                "14.45 +- 0.08",
                "9.63 +- 0.05",
                "9.7 +- 0.02",
                "8.95 +- 0.06"],
            "2110.0-9 vs 2110.0-8": [
                "-0.23 +-  0.62",
                "-1.37 +-   1.3",
                "+0.08 +-   0.2",
                "-2.16 +-  0.83"],
            "2202.0-9 vs 2110.0-9": [
                "+6.95 +-  0.72",
                "+5.35 +-  1.26",
                "+4.48 +-  1.48",
                "+4.09 +-  0.95"]
        }
    )

    return pd.DataFrame()  #table


def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
    """
    """

    fig = None

    traces = list()
    for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
        try:
            decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
        except (hdrh.codec.HdrLengthException, TypeError) as err:
            continue
        previous_x = 0.0
        prev_perc = 0.0
        xaxis = list()
        yaxis = list()
        hovertext = list()
        for item in decoded.get_recorded_iterator():
            # The real value is "percentile".
            # For 100%, we cut that down to "x_perc" to avoid
            # infinity.
            percentile = item.percentile_level_iterated_to
            x_perc = min(percentile, PERCENTILE_MAX)
            xaxis.append(previous_x)
            yaxis.append(item.value_iterated_to)
            hovertext.append(
                f"<b>{_GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
                f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
                f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
                f"Latency: {item.value_iterated_to}uSec"
            )
            next_x = 100.0 / (100.0 - x_perc)
            xaxis.append(next_x)
            yaxis.append(item.value_iterated_to)
            hovertext.append(
                f"<b>{_GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
                f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
                f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
                f"Latency: {item.value_iterated_to}uSec"
            )
            previous_x = next_x
            prev_perc = percentile

        traces.append(
            go.Scatter(
                x=xaxis,
                y=yaxis,
                name=_GRAPH_LAT_HDRH_DESC[lat_name],
                mode="lines",
                legendgroup=_GRAPH_LAT_HDRH_DESC[lat_name],
                showlegend=bool(idx % 2),
                line=dict(
                    color=_get_color(int(idx/2)),
                    dash="solid",
                    width=1 if idx % 2 else 2
                ),
                hovertext=hovertext,
                hoverinfo="text"
            )
        )
    if traces:
        fig = go.Figure()
        fig.add_traces(traces)
        layout_hdrh = layout.get("plot-hdrh-latency", None)
        if lat_hdrh:
            fig.update_layout(layout_hdrh)

    return fig