1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
# Copyright (c) 2019 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for determining whether per-patch perf test votes -1.
This script assumes there exist two text files with processed BMRR results,
located at hardcoded relative paths (subdirs thereof), having several lines
of json-parseable lists of float values, corresponding to testcase results.
This script then uses jumpavg library to determine whether there was
a regression, progression or no change for each testcase.
If number of tests does not match, or there was a regression,
this script votes -1 (by exiting with code 1), otherwise it votes +1 (exit 0).
"""
import json
import sys
from jumpavg.BitCountingMetadataFactory import BitCountingMetadataFactory
from jumpavg.BitCountingClassifier import BitCountingClassifier
def hack(value_list):
"""Return middle two quartiles, hoping to reduce influence of outliers.
:param value_list: List to pick subset from.
:type value_list: list of float
:returns: New list containing middle values.
:rtype: list of float
"""
tmp = sorted(value_list)
eight = len(tmp) / 8
ret = tmp[3*eight:-eight]
return ret
iteration = -1
parent_iterations = list()
new_iterations = list()
num_tests = None
while 1:
iteration += 1
parent_lines = list()
new_lines = list()
filename = "csit_parent/{iter}/results.txt".format(iter=iteration)
try:
with open(filename) as parent_file:
parent_lines = parent_file.readlines()
except IOError:
break
num_lines = len(parent_lines)
filename = "csit_current/{iter}/results.txt".format(iter=iteration)
with open(filename) as new_file:
new_lines = new_file.readlines()
if num_lines != len(new_lines):
print "Number of tests does not match within iteration", iteration
sys.exit(1)
if num_tests is None:
num_tests = num_lines
elif num_tests != num_lines:
print "Number of tests does not match previous at iteration", iteration
sys.exit(1)
parent_iterations.append(parent_lines)
new_iterations.append(new_lines)
classifier = BitCountingClassifier()
exit_code = 0
for test_index in range(num_tests):
val_max = 1.0
parent_values = list()
new_values = list()
for iteration_index in range(len(parent_iterations)):
parent_values.extend(
json.loads(parent_iterations[iteration_index][test_index]))
new_values.extend(
json.loads(new_iterations[iteration_index][test_index]))
print "TRACE pre-hack parent: {p}".format(p=parent_values)
print "TRACE pre-hack current: {n}".format(n=new_values)
parent_values = hack(parent_values)
new_values = hack(new_values)
parent_max = BitCountingMetadataFactory.find_max_value(parent_values)
new_max = BitCountingMetadataFactory.find_max_value(new_values)
val_max = max(val_max, parent_max, new_max)
factory = BitCountingMetadataFactory(val_max)
parent_stats = factory.from_data(parent_values)
new_factory = BitCountingMetadataFactory(val_max, parent_stats.avg)
new_stats = new_factory.from_data(new_values)
print "TRACE parent: {p}".format(p=parent_values)
print "TRACE current: {n}".format(n=new_values)
print "DEBUG parent: {p}".format(p=parent_stats)
print "DEBUG current: {n}".format(n=new_stats)
common_max = max(parent_stats.avg, new_stats.avg)
difference = (new_stats.avg - parent_stats.avg) / common_max
print "DEBUG difference: {d}%".format(d=100 * difference)
classified_list = classifier.classify([parent_stats, new_stats])
if len(classified_list) < 2:
print "Test test_index {test_index}: normal (no anomaly)".format(
test_index=test_index)
continue
anomaly = classified_list[1].metadata.classification
if anomaly == "regression":
print "Test test_index {test_index}: anomaly regression".format(
test_index=test_index)
exit_code = 1
continue
print "Test test_index {test_index}: anomaly {anomaly}".format(
test_index=test_index, anomaly=anomaly)
print "DEBUG exit code {code}".format(code=exit_code)
sys.exit(exit_code)
|