aboutsummaryrefslogtreecommitdiffstats
path: root/libtransport/src/core/fec.cc
diff options
context:
space:
mode:
authorLuca Muscariello <muscariello@ieee.org>2021-04-15 09:05:46 +0200
committerMauro Sardara <msardara@cisco.com>2021-04-15 16:36:16 +0200
commite92e9e839ca2cf42b56322b2489ccc0d8bf767af (patch)
tree9f1647c83a87fbf982ae329e800af25dbfb226b5 /libtransport/src/core/fec.cc
parent3e541d7c947cc2f9db145f26c9274efd29a6fb56 (diff)
[HICN-690] Transport Library Major Refactory
The current patch provides a major refactory of the transportlibrary. A summary of the different components that underwent major modifications is reported below. - Transport protocol updates The hierarchy of classes has been optimized to have common transport services across different transport protocols. This can allow to customize a transport protocol with new features. - A new real-time communication protocol The RTC protocol has been optimized in terms of algorithms to reduce consumer-producer synchronization latency. - A novel socket API The API has been reworked to be easier to consumer but also to have a more efficient integration in L4 proxies. - Several performance improvements A large number of performance improvements have been included in particular to make the entire stack zero-copy and optimize cache miss. - New memory buffer framework Memory management has been reworked entirely to provide a more efficient infra with a richer API. Buffers are now allocated in blocks and a single buffer holds the memory for (1) the shared_ptr control block, (2) the metadata of the packet (e.g. name, pointer to other buffers if buffer is chained and relevant offsets), and (3) the packet itself, as it is sent/received over the network. - A new slab allocator Dynamic memory allocation is now managed by a novel slab allocator that is optimised for packet processing and connection management. Memory is organized in pools of blocks all of the same size which are used during the processing of outgoing/incoming packets. When a memory block Is allocated is always taken from a global pool and when it is deallocated is returned to the pool, thus avoiding the cost of any heap allocation in the data path. - New transport connectors Consumer and producer end-points can communication either using an hicn packet forwarder or with direct connector based on shared memories or sockets. The usage of transport connectors typically for unit and funcitonal testing but may have additional usage. - Support for FEC/ECC for transport services FEC/ECC via reed solomon is supported by default and made available to transport services as a modular component. Reed solomon block codes is a default FEC model that can be replaced in a modular way by many other codes including RLNC not avaiable in this distribution. The current FEC framework support variable size padding and efficiently makes use of the infra memory buffers to avoid additiona copies. - Secure transport framework for signature computation and verification Crypto support is nativelty used in hICN for integrity and authenticity. Novel support that includes RTC has been implemented and made modular and reusable acrosso different transport protocols. - TLS - Transport layer security over hicn Point to point confidentiality is provided by integrating TLS on top of hICN reliable and non-reliable transport. The integration is common and makes a different use of the TLS record. - MLS - Messaging layer security over hicn MLS integration on top of hICN is made by using the MLSPP implemetation open sourced by Cisco. We have included instrumentation tools to deploy performance and functional tests of groups of end-points. - Android support The overall code has been heavily tested in Android environments and has received heavy lifting to better run natively in recent Android OS. Co-authored-by: Mauro Sardara <msardara@cisco.com> Co-authored-by: Michele Papalini <micpapal@cisco.com> Co-authored-by: Olivier Roques <oroques+fdio@cisco.com> Co-authored-by: Giulio Grassi <gigrassi@cisco.com> Change-Id: If477ba2fa686e6f47bdf96307ac60938766aef69 Signed-off-by: Luca Muscariello <muscariello@ieee.org>
Diffstat (limited to 'libtransport/src/core/fec.cc')
-rw-r--r--libtransport/src/core/fec.cc878
1 files changed, 878 insertions, 0 deletions
diff --git a/libtransport/src/core/fec.cc b/libtransport/src/core/fec.cc
new file mode 100644
index 000000000..134198b9e
--- /dev/null
+++ b/libtransport/src/core/fec.cc
@@ -0,0 +1,878 @@
+/*
+ * fec.c -- forward error correction based on Vandermonde matrices
+ * 980624
+ * (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
+ *
+ * Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
+ * Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
+ * Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+ * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
+ * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
+ * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+ * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
+ * OF SUCH DAMAGE.
+ */
+
+/*
+ * The following parameter defines how many bits are used for
+ * field elements. The code supports any value from 2 to 16
+ * but fastest operation is achieved with 8 bit elements
+ * This is the only parameter you may want to change.
+ */
+#ifndef GF_BITS
+#define GF_BITS 8 /* code over GF(2**GF_BITS) - change to suit */
+#endif
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <hicn/transport/portability/platform.h>
+#include "fec.h"
+
+/**
+ * XXX This disable a warning raising only in some platforms.
+ * TODO Check if this warning is a mistake or it is a real bug:
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83404
+ * https://gcc.gnu.org/bugzilla//show_bug.cgi?id=88059
+ */
+#ifndef __clang__
+#pragma GCC diagnostic ignored "-Wstringop-overflow"
+#endif
+
+/*
+ * compatibility stuff
+ */
+#ifdef MSDOS /* but also for others, e.g. sun... */
+#define NEED_BCOPY
+#define bcmp(a,b,n) memcmp(a,b,n)
+#endif
+
+#ifdef ANDROID
+#define bcmp(a,b,n) memcmp(a,b,n)
+#endif
+
+#ifdef NEED_BCOPY
+#define bcopy(s, d, siz) memcpy((d), (s), (siz))
+#define bzero(d, siz) memset((d), '\0', (siz))
+#endif
+
+/*
+ * stuff used for testing purposes only
+ */
+
+#ifdef TEST
+#define DEB(x)
+#define DDB(x) x
+#define DEBUG 0 /* minimal debugging */
+#ifdef MSDOS
+#include <time.h>
+struct timeval {
+ unsigned long ticks;
+};
+#define gettimeofday(x, dummy) { (x)->ticks = clock() ; }
+#define DIFF_T(a,b) (1+ 1000000*(a.ticks - b.ticks) / CLOCKS_PER_SEC )
+typedef unsigned long u_long ;
+typedef unsigned short u_short ;
+#else /* typically, unix systems */
+#include <sys/time.h>
+#define DIFF_T(a,b) \
+ (1+ 1000000*(a.tv_sec - b.tv_sec) + (a.tv_usec - b.tv_usec) )
+#endif
+
+#define TICK(t) \
+ {struct timeval x ; \
+ gettimeofday(&x, NULL) ; \
+ t = x.tv_usec + 1000000* (x.tv_sec & 0xff ) ; \
+ }
+#define TOCK(t) \
+ { u_long t1 ; TICK(t1) ; \
+ if (t1 < t) t = 256000000 + t1 - t ; \
+ else t = t1 - t ; \
+ if (t == 0) t = 1 ;}
+
+u_long ticks[10]; /* vars for timekeeping */
+#else
+#define DEB(x)
+#define DDB(x)
+#define TICK(x)
+#define TOCK(x)
+#endif /* TEST */
+
+/*
+ * You should not need to change anything beyond this point.
+ * The first part of the file implements linear algebra in GF.
+ *
+ * gf is the type used to store an element of the Galois Field.
+ * Must constain at least GF_BITS bits.
+ *
+ * Note: unsigned char will work up to GF(256) but int seems to run
+ * faster on the Pentium. We use int whenever have to deal with an
+ * index, since they are generally faster.
+ */
+#if (GF_BITS < 2 && GF_BITS >16)
+#error "GF_BITS must be 2 .. 16"
+#endif
+
+
+#define GF_SIZE ((1 << GF_BITS) - 1) /* powers of \alpha */
+
+/*
+ * Primitive polynomials - see Lin & Costello, Appendix A,
+ * and Lee & Messerschmitt, p. 453.
+ */
+static const char *allPp[] = { /* GF_BITS polynomial */
+ NULL, /* 0 no code */
+ NULL, /* 1 no code */
+ "111", /* 2 1+x+x^2 */
+ "1101", /* 3 1+x+x^3 */
+ "11001", /* 4 1+x+x^4 */
+ "101001", /* 5 1+x^2+x^5 */
+ "1100001", /* 6 1+x+x^6 */
+ "10010001", /* 7 1 + x^3 + x^7 */
+ "101110001", /* 8 1+x^2+x^3+x^4+x^8 */
+ "1000100001", /* 9 1+x^4+x^9 */
+ "10010000001", /* 10 1+x^3+x^10 */
+ "101000000001", /* 11 1+x^2+x^11 */
+ "1100101000001", /* 12 1+x+x^4+x^6+x^12 */
+ "11011000000001", /* 13 1+x+x^3+x^4+x^13 */
+ "110000100010001", /* 14 1+x+x^6+x^10+x^14 */
+ "1100000000000001", /* 15 1+x+x^15 */
+ "11010000000010001" /* 16 1+x+x^3+x^12+x^16 */
+};
+
+
+/*
+ * To speed up computations, we have tables for logarithm, exponent
+ * and inverse of a number. If GF_BITS <= 8, we use a table for
+ * multiplication as well (it takes 64K, no big deal even on a PDA,
+ * especially because it can be pre-initialized an put into a ROM!),
+ * otherwhise we use a table of logarithms.
+ * In any case the macro gf_mul(x,y) takes care of multiplications.
+ */
+
+static gf gf_exp[2*GF_SIZE]; /* index->poly form conversion table */
+static int gf_log[GF_SIZE + 1]; /* Poly->index form conversion table */
+static gf inverse[GF_SIZE+1]; /* inverse of field elem. */
+ /* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
+
+/*
+ * modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
+ * without a slow divide.
+ */
+static inline gf
+modnn(int x)
+{
+ while (x >= GF_SIZE) {
+ x -= GF_SIZE;
+ x = (x >> GF_BITS) + (x & GF_SIZE);
+ }
+ return x;
+}
+
+#define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
+
+/*
+ * gf_mul(x,y) multiplies two numbers. If GF_BITS<=8, it is much
+ * faster to use a multiplication table.
+ *
+ * USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
+ * many numbers by the same constant. In this case the first
+ * call sets the constant, and others perform the multiplications.
+ * A value related to the multiplication is held in a local variable
+ * declared with USE_GF_MULC . See usage in addmul1().
+ */
+#if (GF_BITS <= 8)
+static gf gf_mul_table[GF_SIZE + 1][GF_SIZE + 1];
+
+#define gf_mul(x,y) gf_mul_table[x][y]
+
+#define USE_GF_MULC gf * __gf_mulc_
+#define GF_MULC0(c) __gf_mulc_ = gf_mul_table[c]
+#define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
+
+static void
+init_mul_table()
+{
+ int i, j;
+ for (i=0; i< GF_SIZE+1; i++)
+ for (j=0; j< GF_SIZE+1; j++)
+ gf_mul_table[i][j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ;
+
+ for (j=0; j< GF_SIZE+1; j++)
+ gf_mul_table[0][j] = gf_mul_table[j][0] = 0;
+}
+#else /* GF_BITS > 8 */
+static inline gf
+gf_mul(x,y)
+{
+ if ( (x) == 0 || (y)==0 ) return 0;
+
+ return gf_exp[gf_log[x] + gf_log[y] ] ;
+}
+#define init_mul_table()
+
+#define USE_GF_MULC register gf * __gf_mulc_
+#define GF_MULC0(c) __gf_mulc_ = &gf_exp[ gf_log[c] ]
+#define GF_ADDMULC(dst, x) { if (x) dst ^= __gf_mulc_[ gf_log[x] ] ; }
+#endif
+
+/*
+ * Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
+ * Lookup tables:
+ * index->polynomial form gf_exp[] contains j= \alpha^i;
+ * polynomial form -> index form gf_log[ j = \alpha^i ] = i
+ * \alpha=x is the primitive element of GF(2^m)
+ *
+ * For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple
+ * multiplication of two numbers can be resolved without calling modnn
+ */
+
+/*
+ * i use malloc so many times, it is easier to put checks all in
+ * one place.
+ */
+static void *
+my_malloc(int sz, const char *err_string)
+{
+ void *p = malloc( sz );
+ if (p == NULL) {
+ fprintf(stderr, "-- malloc failure allocating %s\n", err_string);
+ exit(1) ;
+ }
+ return p ;
+}
+
+#define NEW_GF_MATRIX(rows, cols) \
+ (gf *)my_malloc(rows * cols * sizeof(gf), " ## __LINE__ ## " )
+
+/*
+ * initialize the data structures used for computations in GF.
+ */
+static void
+generate_gf(void)
+{
+ int i;
+ gf mask;
+ const char *Pp = allPp[GF_BITS] ;
+
+ mask = 1; /* x ** 0 = 1 */
+ gf_exp[GF_BITS] = 0; /* will be updated at the end of the 1st loop */
+ /*
+ * first, generate the (polynomial representation of) powers of \alpha,
+ * which are stored in gf_exp[i] = \alpha ** i .
+ * At the same time build gf_log[gf_exp[i]] = i .
+ * The first GF_BITS powers are simply bits shifted to the left.
+ */
+ for (i = 0; i < GF_BITS; i++, mask <<= 1 ) {
+ gf_exp[i] = mask;
+ gf_log[gf_exp[i]] = i;
+ /*
+ * If Pp[i] == 1 then \alpha ** i occurs in poly-repr
+ * gf_exp[GF_BITS] = \alpha ** GF_BITS
+ */
+ if ( Pp[i] == '1' )
+ gf_exp[GF_BITS] ^= mask;
+ }
+ /*
+ * now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als
+ * compute its inverse.
+ */
+ gf_log[gf_exp[GF_BITS]] = GF_BITS;
+ /*
+ * Poly-repr of \alpha ** (i+1) is given by poly-repr of
+ * \alpha ** i shifted left one-bit and accounting for any
+ * \alpha ** GF_BITS term that may occur when poly-repr of
+ * \alpha ** i is shifted.
+ */
+ mask = 1 << (GF_BITS - 1 ) ;
+ for (i = GF_BITS + 1; i < GF_SIZE; i++) {
+ if (gf_exp[i - 1] >= mask)
+ gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1);
+ else
+ gf_exp[i] = gf_exp[i - 1] << 1;
+ gf_log[gf_exp[i]] = i;
+ }
+ /*
+ * log(0) is not defined, so use a special value
+ */
+ gf_log[0] = GF_SIZE ;
+ /* set the extended gf_exp values for fast multiply */
+ for (i = 0 ; i < GF_SIZE ; i++)
+ gf_exp[i + GF_SIZE] = gf_exp[i] ;
+
+ /*
+ * again special cases. 0 has no inverse. This used to
+ * be initialized to GF_SIZE, but it should make no difference
+ * since noone is supposed to read from here.
+ */
+ inverse[0] = 0 ;
+ inverse[1] = 1;
+ for (i=2; i<=GF_SIZE; i++)
+ inverse[i] = gf_exp[GF_SIZE-gf_log[i]];
+}
+
+/*
+ * Various linear algebra operations that i use often.
+ */
+
+/*
+ * addmul() computes dst[] = dst[] + c * src[]
+ * This is used often, so better optimize it! Currently the loop is
+ * unrolled 16 times, a good value for 486 and pentium-class machines.
+ * The case c=0 is also optimized, whereas c=1 is not. These
+ * calls are unfrequent in my typical apps so I did not bother.
+ *
+ * Note that gcc on
+ */
+#define addmul(dst, src, c, sz) \
+ if (c != 0) addmul1(dst, src, c, sz)
+
+#define UNROLL 16 /* 1, 4, 8, 16 */
+static void
+addmul1(gf *dst1, gf *src1, gf c, int sz)
+{
+ USE_GF_MULC ;
+ gf *dst = dst1, *src = src1 ;
+ gf *lim = &dst[sz - UNROLL + 1] ;
+
+ GF_MULC0(c) ;
+
+#if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
+ for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
+ GF_ADDMULC( dst[0] , src[0] );
+ GF_ADDMULC( dst[1] , src[1] );
+ GF_ADDMULC( dst[2] , src[2] );
+ GF_ADDMULC( dst[3] , src[3] );
+#if (UNROLL > 4)
+ GF_ADDMULC( dst[4] , src[4] );
+ GF_ADDMULC( dst[5] , src[5] );
+ GF_ADDMULC( dst[6] , src[6] );
+ GF_ADDMULC( dst[7] , src[7] );
+#endif
+#if (UNROLL > 8)
+ GF_ADDMULC( dst[8] , src[8] );
+ GF_ADDMULC( dst[9] , src[9] );
+ GF_ADDMULC( dst[10] , src[10] );
+ GF_ADDMULC( dst[11] , src[11] );
+ GF_ADDMULC( dst[12] , src[12] );
+ GF_ADDMULC( dst[13] , src[13] );
+ GF_ADDMULC( dst[14] , src[14] );
+ GF_ADDMULC( dst[15] , src[15] );
+#endif
+ }
+#endif
+ lim += UNROLL - 1 ;
+ for (; dst < lim; dst++, src++ ) /* final components */
+ GF_ADDMULC( *dst , *src );
+}
+
+/*
+ * computes C = AB where A is n*k, B is k*m, C is n*m
+ */
+static void
+matmul(gf *a, gf *b, gf *c, int n, int k, int m)
+{
+ int row, col, i ;
+
+ for (row = 0; row < n ; row++) {
+ for (col = 0; col < m ; col++) {
+ gf *pa = &a[ row * k ];
+ gf *pb = &b[ col ];
+ gf acc = 0 ;
+ for (i = 0; i < k ; i++, pa++, pb += m )
+ acc ^= gf_mul( *pa, *pb ) ;
+ c[ row * m + col ] = acc ;
+ }
+ }
+}
+
+#ifdef DEBUGG
+/*
+ * returns 1 if the square matrix is identiy
+ * (only for test)
+ */
+static int
+is_identity(gf *m, int k)
+{
+ int row, col ;
+ for (row=0; row<k; row++)
+ for (col=0; col<k; col++)
+ if ( (row==col && *m != 1) ||
+ (row!=col && *m != 0) )
+ return 0 ;
+ else
+ m++ ;
+ return 1 ;
+}
+#endif /* debug */
+
+/*
+ * invert_mat() takes a matrix and produces its inverse
+ * k is the size of the matrix.
+ * (Gauss-Jordan, adapted from Numerical Recipes in C)
+ * Return non-zero if singular.
+ */
+DEB( int pivloops=0; int pivswaps=0 ; /* diagnostic */)
+static int
+invert_mat(gf *src, int k)
+{
+ gf c, *p ;
+ int irow, icol, row, col, i, ix ;
+
+ int error = 1 ;
+ int *indxc = (int*)my_malloc(k*sizeof(int), "indxc");
+ int *indxr = (int*)my_malloc(k*sizeof(int), "indxr");
+ int *ipiv = (int*)my_malloc(k*sizeof(int), "ipiv");
+ gf *id_row = NEW_GF_MATRIX(1, k);
+ gf *temp_row = NEW_GF_MATRIX(1, k);
+
+ bzero(id_row, k*sizeof(gf));
+ DEB( pivloops=0; pivswaps=0 ; /* diagnostic */ )
+ /*
+ * ipiv marks elements already used as pivots.
+ */
+ for (i = 0; i < k ; i++)
+ ipiv[i] = 0 ;
+
+ for (col = 0; col < k ; col++) {
+ gf *pivot_row ;
+ /*
+ * Zeroing column 'col', look for a non-zero element.
+ * First try on the diagonal, if it fails, look elsewhere.
+ */
+ irow = icol = -1 ;
+ if (ipiv[col] != 1 && src[col*k + col] != 0) {
+ irow = col ;
+ icol = col ;
+ goto found_piv ;
+ }
+ for (row = 0 ; row < k ; row++) {
+ if (ipiv[row] != 1) {
+ for (ix = 0 ; ix < k ; ix++) {
+ DEB( pivloops++ ; )
+ if (ipiv[ix] == 0) {
+ if (src[row*k + ix] != 0) {
+ irow = row ;
+ icol = ix ;
+ goto found_piv ;
+ }
+ } else if (ipiv[ix] > 1) {
+ fprintf(stderr, "singular matrix\n");
+ goto fail ;
+ }
+ }
+ }
+ }
+ if (icol == -1) {
+ fprintf(stderr, "XXX pivot not found!\n");
+ goto fail ;
+ }
+found_piv:
+ ++(ipiv[icol]) ;
+ /*
+ * swap rows irow and icol, so afterwards the diagonal
+ * element will be correct. Rarely done, not worth
+ * optimizing.
+ */
+ if (irow != icol) {
+ for (ix = 0 ; ix < k ; ix++ ) {
+ SWAP( src[irow*k + ix], src[icol*k + ix], gf) ;
+ }
+ }
+ indxr[col] = irow ;
+ indxc[col] = icol ;
+ pivot_row = &src[icol*k] ;
+ c = pivot_row[icol] ;
+ if (c == 0) {
+ fprintf(stderr, "singular matrix 2\n");
+ goto fail ;
+ }
+ if (c != 1 ) { /* otherwhise this is a NOP */
+ /*
+ * this is done often , but optimizing is not so
+ * fruitful, at least in the obvious ways (unrolling)
+ */
+ DEB( pivswaps++ ; )
+ c = inverse[ c ] ;
+ pivot_row[icol] = 1 ;
+ for (ix = 0 ; ix < k ; ix++ )
+ pivot_row[ix] = gf_mul(c, pivot_row[ix] );
+ }
+ /*
+ * from all rows, remove multiples of the selected row
+ * to zero the relevant entry (in fact, the entry is not zero
+ * because we know it must be zero).
+ * (Here, if we know that the pivot_row is the identity,
+ * we can optimize the addmul).
+ */
+ id_row[icol] = 1;
+ if (bcmp(pivot_row, id_row, k*sizeof(gf)) != 0) {
+ for (p = src, ix = 0 ; ix < k ; ix++, p += k ) {
+ if (ix != icol) {
+ c = p[icol] ;
+ p[icol] = 0 ;
+ addmul(p, pivot_row, c, k );
+ }
+ }
+ }
+ id_row[icol] = 0;
+ } /* done all columns */
+ for (col = k-1 ; col >= 0 ; col-- ) {
+ if (indxr[col] <0 || indxr[col] >= k)
+ fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]);
+ else if (indxc[col] <0 || indxc[col] >= k)
+ fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]);
+ else
+ if (indxr[col] != indxc[col] ) {
+ for (row = 0 ; row < k ; row++ ) {
+ SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf) ;
+ }
+ }
+ }
+ error = 0 ;
+fail:
+ free(indxc);
+ free(indxr);
+ free(ipiv);
+ free(id_row);
+ free(temp_row);
+ return error ;
+}
+
+/*
+ * fast code for inverting a vandermonde matrix.
+ * XXX NOTE: It assumes that the matrix
+ * is not singular and _IS_ a vandermonde matrix. Only uses
+ * the second column of the matrix, containing the p_i's.
+ *
+ * Algorithm borrowed from "Numerical recipes in C" -- sec.2.8, but
+ * largely revised for my purposes.
+ * p = coefficients of the matrix (p_i)
+ * q = values of the polynomial (known)
+ */
+
+int
+invert_vdm(gf *src, int k)
+{
+ int i, j, row, col ;
+ gf *b, *c, *p;
+ gf t, xx ;
+
+ if (k == 1) /* degenerate case, matrix must be p^0 = 1 */
+ return 0 ;
+ /*
+ * c holds the coefficient of P(x) = Prod (x - p_i), i=0..k-1
+ * b holds the coefficient for the matrix inversion
+ */
+ c = NEW_GF_MATRIX(1, k);
+ b = NEW_GF_MATRIX(1, k);
+
+ p = NEW_GF_MATRIX(1, k);
+
+ for ( j=1, i = 0 ; i < k ; i++, j+=k ) {
+ c[i] = 0 ;
+ p[i] = src[j] ; /* p[i] */
+ }
+ /*
+ * construct coeffs. recursively. We know c[k] = 1 (implicit)
+ * and start P_0 = x - p_0, then at each stage multiply by
+ * x - p_i generating P_i = x P_{i-1} - p_i P_{i-1}
+ * After k steps we are done.
+ */
+ c[k-1] = p[0] ; /* really -p(0), but x = -x in GF(2^m) */
+ for (i = 1 ; i < k ; i++ ) {
+ gf p_i = p[i] ; /* see above comment */
+ for (j = k-1 - ( i - 1 ) ; j < k-1 ; j++ )
+ c[j] ^= gf_mul( p_i, c[j+1] ) ;
+ c[k-1] ^= p_i ;
+ }
+
+ for (row = 0 ; row < k ; row++ ) {
+ /*
+ * synthetic division etc.
+ */
+ xx = p[row] ;
+ t = 1 ;
+ b[k-1] = 1 ; /* this is in fact c[k] */
+ for (i = k-2 ; i >= 0 ; i-- ) {
+ b[i] = c[i+1] ^ gf_mul(xx, b[i+1]) ;
+ t = gf_mul(xx, t) ^ b[i] ;
+ }
+ for (col = 0 ; col < k ; col++ )
+ src[col*k + row] = gf_mul(inverse[t], b[col] );
+ }
+ free(c) ;
+ free(b) ;
+ free(p) ;
+ return 0 ;
+}
+
+static int fec_initialized = 0 ;
+static void
+init_fec()
+{
+ TICK(ticks[0]);
+ generate_gf();
+ TOCK(ticks[0]);
+ DDB(fprintf(stderr, "generate_gf took %ldus\n", ticks[0]);)
+ TICK(ticks[0]);
+ init_mul_table();
+ TOCK(ticks[0]);
+ DDB(fprintf(stderr, "init_mul_table took %ldus\n", ticks[0]);)
+ fec_initialized = 1 ;
+}
+
+/*
+ * This section contains the proper FEC encoding/decoding routines.
+ * The encoding matrix is computed starting with a Vandermonde matrix,
+ * and then transforming it into a systematic matrix.
+ */
+
+#define FEC_MAGIC 0xFECC0DEC
+
+void
+fec_free(struct fec_parms *p)
+{
+ if (p==NULL ||
+ p->magic != ( ( (FEC_MAGIC ^ p->k) ^ p->n) ^ (unsigned long)(p->enc_matrix)) ) {
+ fprintf(stderr, "bad parameters to fec_free\n");
+ return ;
+ }
+ free(p->enc_matrix);
+ free(p);
+}
+
+/*
+ * create a new encoder, returning a descriptor. This contains k,n and
+ * the encoding matrix.
+ */
+struct fec_parms *
+fec_new(int k, int n)
+{
+ int row, col ;
+ gf *p, *tmp_m ;
+
+ struct fec_parms *retval ;
+
+ if (fec_initialized == 0)
+ init_fec();
+
+ if (k > GF_SIZE + 1 || n > GF_SIZE + 1 || k > n ) {
+ fprintf(stderr, "Invalid parameters k %d n %d GF_SIZE %d\n",
+ k, n, GF_SIZE );
+ return NULL ;
+ }
+ retval = (struct fec_parms *)my_malloc(sizeof(struct fec_parms), "new_code");
+ retval->k = k ;
+ retval->n = n ;
+ retval->enc_matrix = NEW_GF_MATRIX(n, k);
+ retval->magic = ( ( FEC_MAGIC ^ k) ^ n) ^ (unsigned long)(retval->enc_matrix) ;
+ tmp_m = NEW_GF_MATRIX(n, k);
+ /*
+ * fill the matrix with powers of field elements, starting from 0.
+ * The first row is special, cannot be computed with exp. table.
+ */
+ tmp_m[0] = 1 ;
+ for (col = 1; col < k ; col++)
+ tmp_m[col] = 0 ;
+ for (p = tmp_m + k, row = 0; row < n-1 ; row++, p += k) {
+ for ( col = 0 ; col < k ; col ++ )
+ p[col] = gf_exp[modnn(row*col)];
+ }
+
+ /*
+ * quick code to build systematic matrix: invert the top
+ * k*k vandermonde matrix, multiply right the bottom n-k rows
+ * by the inverse, and construct the identity matrix at the top.
+ */
+ TICK(ticks[3]);
+ invert_vdm(tmp_m, k); /* much faster than invert_mat */
+ matmul(tmp_m + k*k, tmp_m, retval->enc_matrix + k*k, n - k, k, k);
+ /*
+ * the upper matrix is I so do not bother with a slow multiply
+ */
+ bzero(retval->enc_matrix, k*k*sizeof(gf) );
+ for (p = retval->enc_matrix, col = 0 ; col < k ; col++, p += k+1 )
+ *p = 1 ;
+ free(tmp_m);
+ TOCK(ticks[3]);
+
+ DDB(fprintf(stderr, "--- %ld us to build encoding matrix\n",
+ ticks[3]);)
+ DEB(pr_matrix(retval->enc_matrix, n, k, "encoding_matrix");)
+ return retval ;
+}
+
+/*
+ * fec_encode accepts as input pointers to n data packets of size sz,
+ * and produces as output a packet pointed to by fec, computed
+ * with index "index".
+ */
+void
+fec_encode(struct fec_parms *code, gf *src[], gf *fec, int index, int sz)
+{
+ int i, k = code->k ;
+ gf *p ;
+
+ if (GF_BITS > 8)
+ sz /= 2 ;
+
+ if (index < k)
+ bcopy(src[index], fec, sz*sizeof(gf) ) ;
+ else if (index < code->n) {
+ p = &(code->enc_matrix[index*k] );
+ bzero(fec, sz*sizeof(gf));
+ for (i = 0; i < k ; i++)
+ addmul(fec, src[i], p[i], sz ) ;
+ } else
+ fprintf(stderr, "Invalid index %d (max %d)\n",
+ index, code->n - 1 );
+}
+
+/*
+ * shuffle move src packets in their position
+ */
+static int
+shuffle(gf *pkt[], int index[], int k)
+{
+ int i;
+
+ for ( i = 0 ; i < k ; ) {
+ if (index[i] >= k || index[i] == i)
+ i++ ;
+ else {
+ /*
+ * put pkt in the right position (first check for conflicts).
+ */
+ int c = index[i] ;
+
+ if (index[c] == c) {
+ DEB(fprintf(stderr, "\nshuffle, error at %d\n", i);)
+ return 1 ;
+ }
+ SWAP(index[i], index[c], int) ;
+ SWAP(pkt[i], pkt[c], gf *) ;
+ }
+ }
+ DEB( /* just test that it works... */
+ for ( i = 0 ; i < k ; i++ ) {
+ if (index[i] < k && index[i] != i) {
+ fprintf(stderr, "shuffle: after\n");
+ for (i=0; i<k ; i++) fprintf(stderr, "%3d ", index[i]);
+ fprintf(stderr, "\n");
+ return 1 ;
+ }
+ }
+ )
+ return 0 ;
+}
+
+/*
+ * build_decode_matrix constructs the encoding matrix given the
+ * indexes. The matrix must be already allocated as
+ * a vector of k*k elements, in row-major order
+ */
+static gf *
+build_decode_matrix(struct fec_parms *code, gf *pkt[], int index[])
+{
+ int i , k = code->k ;
+ gf *p, *matrix = NEW_GF_MATRIX(k, k);
+
+ TICK(ticks[9]);
+ for (i = 0, p = matrix ; i < k ; i++, p += k ) {
+#if 1 /* this is simply an optimization, not very useful indeed */
+ if (index[i] < k) {
+ bzero(p, k*sizeof(gf) );
+ p[i] = 1 ;
+ } else
+#endif
+ if (index[i] < code->n )
+ bcopy( &(code->enc_matrix[index[i]*k]), p, k*sizeof(gf) );
+ else {
+ fprintf(stderr, "decode: invalid index %d (max %d)\n",
+ index[i], code->n - 1 );
+ free(matrix) ;
+ return NULL ;
+ }
+ }
+ TICK(ticks[9]);
+ if (invert_mat(matrix, k)) {
+ free(matrix);
+ matrix = NULL ;
+ }
+ TOCK(ticks[9]);
+ return matrix ;
+}
+
+/*
+ * fec_decode receives as input a vector of packets, the indexes of
+ * packets, and produces the correct vector as output.
+ *
+ * Input:
+ * code: pointer to code descriptor
+ * pkt: pointers to received packets. They are modified
+ * to store the output packets (in place)
+ * index: pointer to packet indexes (modified)
+ * sz: size of each packet
+ */
+int
+fec_decode(struct fec_parms *code, gf *pkt[], int index[], int sz)
+{
+ gf *m_dec ;
+ gf **new_pkt ;
+ int row, col , k = code->k ;
+
+ if (GF_BITS > 8)
+ sz /= 2 ;
+
+ if (shuffle(pkt, index, k)) /* error if true */
+ return 1 ;
+ m_dec = build_decode_matrix(code, pkt, index);
+
+ if (m_dec == NULL)
+ return 1 ; /* error */
+ /*
+ * do the actual decoding
+ */
+ new_pkt = (gf**)my_malloc (k * sizeof (gf * ), "new pkt pointers" );
+ for (row = 0 ; row < k ; row++ ) {
+ if (index[row] >= k) {
+ new_pkt[row] = (gf*) my_malloc (sz * sizeof (gf), "new pkt buffer" );
+ bzero(new_pkt[row], sz * sizeof(gf) ) ;
+ for (col = 0 ; col < k ; col++ )
+ addmul(new_pkt[row], pkt[col], m_dec[row*k + col], sz) ;
+ }
+ }
+ /*
+ * move pkts to their final destination
+ */
+ for (row = 0 ; row < k ; row++ ) {
+ if (index[row] >= k) {
+ bcopy(new_pkt[row], pkt[row], sz*sizeof(gf));
+ free(new_pkt[row]);
+ }
+ }
+ free(new_pkt);
+ free(m_dec);
+
+ return 0;
+}