aboutsummaryrefslogtreecommitdiffstats
path: root/libtransport/src/protocols/rtc/rtc_state.cc
blob: 82ac0b9c17ca1bb672fa72ee4a7b822108739ac6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*
 * Copyright (c) 2021 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <glog/logging.h>
#include <protocols/rtc/rtc_consts.h>
#include <protocols/rtc/rtc_state.h>

namespace transport {

namespace protocol {

namespace rtc {

RTCState::RTCState(Indexer *indexer,
                   ProbeHandler::SendProbeCallback &&probe_callback,
                   DiscoveredRttCallback &&discovered_rtt_callback,
                   asio::io_service &io_service)
    : loss_history_(10),  // log 10sec history
      indexer_(indexer),
      probe_handler_(std::make_shared<ProbeHandler>(std::move(probe_callback),
                                                    io_service)),
      discovered_rtt_callback_(std::move(discovered_rtt_callback)) {
  init_rtt_timer_ = std::make_unique<asio::steady_timer>(io_service);
}

RTCState::~RTCState() {}

void RTCState::initParams() {
  // packets counters (total)
  sent_interests_ = 0;
  sent_rtx_ = 0;
  received_data_ = 0;
  received_nacks_ = 0;
  received_timeouts_ = 0;
  received_probes_ = 0;

  // loss counters
  packets_lost_ = 0;
  definitely_lost_pkt_ = 0;
  losses_recovered_ = 0;
  first_seq_in_round_ = 0;
  highest_seq_received_ = 0;
  highest_seq_received_in_order_ = 0;
  last_seq_nacked_ = 0;
  loss_rate_ = 0.0;
  avg_loss_rate_ = -1.0;
  last_round_loss_rate_ = 0.0;

  // loss rate per sec
  lost_per_sec_ = 0;
  total_expected_packets_ = 0;
  per_sec_loss_rate_ = 0.0;

  // residual losses counters
  expected_packets_ = 0;
  packets_sent_to_app_ = 0;
  rounds_from_last_compute_ = 0;
  residual_loss_rate_ = 0.0;

  // fec counters
  pending_fec_pkt_ = 0;
  received_fec_pkt_ = 0;

  // bw counters
  received_bytes_ = 0;
  received_fec_bytes_ = 0;
  recovered_bytes_with_fec_ = 0;

  avg_packet_size_ = INIT_PACKET_SIZE;
  production_rate_ = 0.0;
  received_rate_ = 0.0;
  fec_recovered_rate_ = 0.0;

  // nack counter
  past_nack_on_last_round_ = false;
  received_nacks_last_round_ = 0;

  // packets counter
  received_packets_last_round_ = 0;
  received_data_last_round_ = 0;
  received_data_from_cache_ = 0;
  sent_interests_last_round_ = 0;
  sent_rtx_last_round_ = 0;

  // round conunters
  rounds_ = 0;
  rounds_without_nacks_ = 0;
  rounds_without_packets_ = 0;

  last_production_seq_ = 0;
  producer_is_active_ = false;
  last_prod_update_seq_ = 0;

  // paths stats
  path_table_.clear();
  main_path_ = nullptr;
  edge_path_ = nullptr;

  // packet cache (not pending anymore)
  packet_cache_.clear();

  // pending interests
  pending_interests_.clear();

  // used to keep track of the skipped interest
  last_interest_sent_ = 0;

  // init rtt
  first_interest_sent_time_ = ~0;
  first_interest_sent_seq_ = 0;

  // start probing the producer
  init_rtt_ = false;
  probe_handler_->setSuffixRange(MIN_INIT_PROBE_SEQ, MAX_INIT_PROBE_SEQ);
  probe_handler_->setProbes(INIT_RTT_PROBE_INTERVAL, INIT_RTT_PROBES);
  probe_handler_->sendProbes();
  setInitRttTimer(INIT_RTT_PROBE_RESTART);
}

// packet events
void RTCState::onSendNewInterest(const core::Name *interest_name) {
  uint64_t now = utils::SteadyTime::nowMs().count();
  uint32_t seq = interest_name->getSuffix();
  pending_interests_.insert(std::pair<uint32_t, uint64_t>(seq, now));

  if (sent_interests_ == 0) {
    first_interest_sent_time_ = now;
    first_interest_sent_seq_ = seq;
  }

  if (indexer_->isFec(seq)) {
    pending_fec_pkt_++;
  }

  if (last_interest_sent_ == 0 && seq != 0) {
    last_interest_sent_ = seq;  // init last interest sent
  }

  // TODO what happen in case of jumps?
  eraseFromPacketCache(
      seq);  // if we send this interest we don't know its state
  for (uint32_t i = last_interest_sent_ + 1; i < seq; i++) {
    if (indexer_->isFec(i)) {
      // only fec packets can be skipped
      addToPacketCache(i, PacketState::SKIPPED);
    }
  }

  last_interest_sent_ = seq;

  sent_interests_++;
  sent_interests_last_round_++;
}

void RTCState::onTimeout(uint32_t seq, bool lost) {
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    pending_interests_.erase(it);
    if (indexer_->isFec(seq)) pending_fec_pkt_--;
  }
  received_timeouts_++;

  if (lost) onPacketLost(seq);
}

void RTCState::onLossDetected(uint32_t seq) {
  PacketState state = getPacketState(seq);

  // if the packet is already marked with a state, do nothing
  // to be considered lost the packet must be pending
  if (state == PacketState::UNKNOWN &&
      pending_interests_.find(seq) != pending_interests_.end()) {
    packets_lost_++;
    addToPacketCache(seq, PacketState::LOST);
  }
}

void RTCState::onRetransmission(uint32_t seq) {
  // remove the interest for the pendingInterest map only after the first rtx.
  // in this way we can handle the ooo packets that come in late as normla
  // packet. we consider a packet lost only if we sent at least an RTX for it.
  // XXX this may become problematic if we stop the RTX transmissions
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    pending_interests_.erase(it);
    if (indexer_->isFec(seq)) pending_fec_pkt_--;
  }
  sent_rtx_++;
  sent_rtx_last_round_++;
}

void RTCState::onPossibleLossWithNoRtx(uint32_t seq) {
  // if fec is on or rtx is disable we don't need to do anything to recover a
  // packet. however in both cases we need to remove possible missing packets
  // from the window of pendinig interest in order to free space without wating
  // for the timeout.
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    pending_interests_.erase(it);
    if (indexer_->isFec(seq)) pending_fec_pkt_--;
  }
}

void RTCState::onDataPacketReceived(const core::ContentObject &content_object,
                                    bool compute_stats) {
  uint32_t seq = content_object.getName().getSuffix();

  if (compute_stats) {
    updatePathStats(content_object, false);
    received_data_last_round_++;
  }
  received_data_++;
  packets_sent_to_app_++;

  core::ParamsRTC params = RTCState::getDataParams(content_object);

  if (last_prod_update_seq_ < seq) {
    last_prod_update_seq_ = seq;
    production_rate_ = (double)params.prod_rate;
  }

  updatePacketSize(content_object);
  updateReceivedBytes(content_object, false);
  addRecvOrLost(seq, PacketState::RECEIVED);

  // the producer is responding
  // it is generating valid data packets so we consider it active
  producer_is_active_ = true;

  received_packets_last_round_++;
}

void RTCState::onFecPacketReceived(const core::ContentObject &content_object) {
  uint32_t seq = content_object.getName().getSuffix();
  updateReceivedBytes(content_object, true);

  PacketState state = getPacketState(seq);
  if (state != PacketState::LOST) {
    // increase only for not lost packets
    received_fec_pkt_++;
  }
  addRecvOrLost(seq, PacketState::RECEIVED);
  // the producer is responding
  // it is generating valid data packets so we consider it active
  producer_is_active_ = true;
}

void RTCState::onNackPacketReceived(const core::ContentObject &nack,
                                    bool compute_stats) {
  uint32_t seq = nack.getName().getSuffix();
  struct nack_packet_t *nack_pkt =
      (struct nack_packet_t *)nack.getPayload()->data();
  uint32_t production_seq = nack_pkt->getProductionSegment();
  uint32_t production_rate = nack_pkt->getProductionRate();

  if (TRANSPORT_EXPECT_FALSE(main_path_ == nullptr) ||
      last_prod_update_seq_ < production_seq) {
    // update production rate
    last_production_seq_ = production_seq;
    production_rate_ = (double)production_rate;
  }

  if (compute_stats) {
    // this is not an RTX
    updatePathStats(nack, true);
  }

  // for statistics pourpose we log all nacks, also the one received for
  // retransmitted packets
  received_nacks_++;
  received_nacks_last_round_++;

  bool to_delete = false;
  if (production_seq > seq) {
    // old nack, seq is lost
    // update last nacked
    if (last_seq_nacked_ < seq) last_seq_nacked_ = seq;
    DLOG_IF(INFO, VLOG_IS_ON(3))
        << "lost packet " << seq << " beacuse of a past nack";
    if (compute_stats) past_nack_on_last_round_ = true;
    onPacketLost(seq);
  } else if (seq > production_seq) {
    // future nack
    // remove the nack from the pending interest map
    // (the packet is not received/lost yet)
    to_delete = true;
  } else {
    // this should be a quite rear event. simply remove the
    // packet from the pending interest list
    to_delete = true;
  }

  if (to_delete) {
    auto it = pending_interests_.find(seq);
    if (it != pending_interests_.end()) {
      pending_interests_.erase(it);
      if (indexer_->isFec(seq)) pending_fec_pkt_--;
    }
  }

  received_packets_last_round_++;
}

void RTCState::onPacketLost(uint32_t seq) {
  if (!indexer_->isFec(seq)) {
    PacketState state = getPacketState(seq);
    if (state == PacketState::LOST ||
        (state == PacketState::UNKNOWN &&
         pending_interests_.find(seq) != pending_interests_.end())) {
      definitely_lost_pkt_++;
      DLOG_IF(INFO, VLOG_IS_ON(4)) << "packet " << seq << " is lost";
    }
  }

  addRecvOrLost(seq, PacketState::DEFINITELY_LOST);
}

void RTCState::onPacketRecoveredRtx(const core::ContentObject &content_object,
                                    uint64_t rtt) {
  uint32_t seq = content_object.getName().getSuffix();
  packets_sent_to_app_++;

  // increase the recovered packet counter only if the packet was marked as LOST
  // before.
  PacketState state = getPacketState(seq);
  if (state == PacketState::LOST) losses_recovered_++;

  addRecvOrLost(seq, PacketState::RECEIVED);
  updateReceivedBytes(content_object, false);

  if (rtt == 0) return;  // nothing to do

  uint32_t path_label = content_object.getPathLabel();
  auto path_it = path_table_.find(path_label);
  if (path_it == path_table_.end()) {
    // this is a new path and it must be a cache
    std::shared_ptr<RTCDataPath> newPath =
        std::make_shared<RTCDataPath>(path_label);
    auto ret = path_table_.insert(
        std::pair<uint32_t, std::shared_ptr<RTCDataPath>>(path_label, newPath));
    path_it = ret.first;
  }

  auto path = path_it->second;
  if (path->pathToProducer())
    return;  // this packet is coming from a producer
             // even if we sent an RTX. this may happen
             // for RTX that are sent too fast or in
             // case of multipath

  path->insertRttSample(utils::SteadyTime::Milliseconds(rtt), true);
}

void RTCState::onFecPacketRecoveredRtx(
    const core::ContentObject &content_object) {
  // This is the same as onPacketRecoveredRtx, but in this is case the
  // pkt is also a FEC pkt, the addRecvOrLost will be called afterwards
  losses_recovered_++;
  updateReceivedBytes(content_object, true);
}

void RTCState::onPacketRecoveredFec(uint32_t seq, uint32_t size) {
  losses_recovered_++;
  packets_sent_to_app_++;
  recovered_bytes_with_fec_ += size;

  // adding header to the count
  recovered_bytes_with_fec_ += 60;  // XXX get header size some where

  // the packet could be not marked as lost yet. onLossDetected checks if add in
  // the packet in the lost count or not
  onLossDetected(seq);

  addRecvOrLost(seq, PacketState::RECEIVED);
}

bool RTCState::onProbePacketReceived(const core::ContentObject &probe) {
  uint32_t seq = probe.getName().getSuffix();
  core::ParamsRTC params = RTCState::getProbeParams(probe);

  bool is_valid = true;
  uint32_t max = UINT32_MAX;
  if (params.prod_rate == max) is_valid = false;

  uint64_t rtt;
  rtt = probe_handler_->getRtt(seq, is_valid);
  if (rtt == 0) return false;  // this is not a valid probe

  if (!is_valid) return false;  // not a valid probe

  // if we are here the producer is active
  producer_is_active_ = true;

  // Like for data and nacks update the path stats. Here the RTT is computed
  // by the probe handler. Both probes for rtt and bw are good to estimate
  // info on the path.
  uint32_t path_label = probe.getPathLabel();
  auto path_it = path_table_.find(path_label);

  if (path_it == path_table_.end()) {
    // found a new path
    std::shared_ptr<RTCDataPath> newPath =
        std::make_shared<RTCDataPath>(path_label);
    auto ret = path_table_.insert(
        std::pair<uint32_t, std::shared_ptr<RTCDataPath>>(path_label, newPath));
    path_it = ret.first;
  }

  auto path = path_it->second;

  path->insertRttSample(utils::SteadyTime::Milliseconds(rtt), true);
  path->receivedNack();

  uint64_t now = utils::SteadyTime::nowMs().count();

  int64_t OWD = now - params.timestamp;
  path->insertOwdSample(OWD);

  if (last_prod_update_seq_ < params.prod_seg) {
    last_production_seq_ = params.prod_seg;
    production_rate_ = (double)params.prod_rate;
  }

  // check for init RTT. if received_probes_ is equal to 0 schedule a timer to
  // wait for the INIT_RTT_PROBES. in this way if some probes get lost we don't
  // wait forever
  received_probes_++;

  if (!init_rtt_ && received_probes_ <= INIT_RTT_PROBES) {
    if (received_probes_ == 1) {
      // we got the first probe, wait at most INIT_RTT_PROBE_WAIT sec for the
      // others.
      main_path_ = path;
      setInitRttTimer(INIT_RTT_PROBE_WAIT);
    }
    if (received_probes_ == INIT_RTT_PROBES) {
      // we are done
      init_rtt_timer_->cancel();
      checkInitRttTimer();
    }
  }

  received_packets_last_round_++;

  // ignore probes sent before the first interest
  if ((now - rtt) <= first_interest_sent_time_) return false;
  return true;
}

void RTCState::onJumpForward(uint32_t next_seq) {
  for (uint32_t seq = highest_seq_received_in_order_ + 1; seq < next_seq;
       seq++) {
    PacketState packet_state = getPacketState(seq);
    if (packet_state != PacketState::RECEIVED &&
        packet_state != PacketState::DEFINITELY_LOST) {
      // here we considere the packet as definitely lost whitout increase the
      // lost packet counter because this loss is not due to the network
      // condition but the transport wants to skip the packet
      onPacketLost(seq);
    }
  }
}

void RTCState::onNewRound(double round_len, bool in_sync) {
  if (path_table_.empty()) return;

  double bytes_per_sec =
      ((double)received_bytes_ * (MILLI_IN_A_SEC / round_len));
  if (received_rate_ == 0)
    received_rate_ = bytes_per_sec;
  else
    received_rate_ = (received_rate_ * MOVING_AVG_ALPHA) +
                     ((1 - MOVING_AVG_ALPHA) * bytes_per_sec);
  double fec_bytes_per_sec =
      ((double)received_fec_bytes_ * (MILLI_IN_A_SEC / round_len));

  if (fec_received_rate_ == 0)
    fec_received_rate_ = fec_bytes_per_sec;
  else
    fec_received_rate_ = (fec_received_rate_ * 0.8) + (0.2 * fec_bytes_per_sec);

  double fec_recovered_bytes_per_sec =
      ((double)recovered_bytes_with_fec_ * (MILLI_IN_A_SEC / round_len));

  if (fec_recovered_rate_ == 0)
    fec_recovered_rate_ = fec_recovered_bytes_per_sec;
  else
    fec_recovered_rate_ =
        (fec_recovered_rate_ * 0.8) + (0.2 * fec_recovered_bytes_per_sec);

  // search for an active path. Is it possible to have multiple path that are
  // used at the same time. We use as reference path the one from where we gets
  // more packets. This means that the path should have better lantecy or less
  // channel losses

  uint32_t last_round_packets = 0;
  uint64_t min_edge_rtt = UINT_MAX;
  std::shared_ptr<RTCDataPath> old_main_path = main_path_;
  main_path_ = nullptr;
  edge_path_ = nullptr;

  for (auto it = path_table_.begin(); it != path_table_.end(); it++) {
    if (it->second->isValidProducer()) {
      uint32_t pkt = it->second->getPacketsLastRound();
      if (pkt > last_round_packets) {
        last_round_packets = pkt;
        main_path_ = it->second;
      }
    } else if (it->second->isActive() && !it->second->pathToProducer()) {
      // this is a path to a cache from where we are receiving content
      if (it->second->getMinRtt() < min_edge_rtt) {
        min_edge_rtt = it->second->getMinRtt();
        edge_path_ = it->second;
      }
    }
    it->second->roundEnd();
  }

  if (main_path_ == nullptr) main_path_ = old_main_path;
  if (edge_path_ == nullptr) edge_path_ = main_path_;
  if (edge_path_->getMinRtt() >= main_path_->getMinRtt())
    edge_path_ = main_path_;

  // in case we get a new main path we reset the stats of the old one. this is
  // beacuse, in case we need to switch back we don't what to take decisions on
  // old stats that may be outdated.
  if (main_path_ != old_main_path) old_main_path->clearRtt();

  updateLossRate(in_sync);

  // handle nacks
  if (!past_nack_on_last_round_ && received_bytes_ > 0) {
    rounds_without_nacks_++;
  } else {
    rounds_without_nacks_ = 0;
  }

  // check if the producer is active
  if (received_packets_last_round_ != 0) {
    rounds_without_packets_ = 0;
  } else {
    rounds_without_packets_++;
    if (rounds_without_packets_ >= MAX_ROUND_WHIOUT_PACKETS &&
        producer_is_active_ != false) {
      initParams();
    }
  }

  // reset counters
  received_bytes_ = 0;
  received_fec_bytes_ = 0;
  recovered_bytes_with_fec_ = 0;
  packets_lost_ = 0;
  definitely_lost_pkt_ = 0;
  losses_recovered_ = 0;
  first_seq_in_round_ = highest_seq_received_;

  past_nack_on_last_round_ = false;
  received_nacks_last_round_ = 0;

  received_packets_last_round_ = 0;
  received_data_last_round_ = 0;
  received_data_from_cache_ = 0;
  sent_interests_last_round_ = 0;
  sent_rtx_last_round_ = 0;

  received_fec_pkt_ = 0;

  rounds_++;
}

void RTCState::updateReceivedBytes(const core::ContentObject &content_object,
                                   bool isFec) {
  if (isFec) {
    received_fec_bytes_ +=
        (uint32_t)(content_object.headerSize() + content_object.payloadSize());
  } else {
    received_bytes_ +=
        (uint32_t)(content_object.headerSize() + content_object.payloadSize());
  }
}

void RTCState::updatePacketSize(const core::ContentObject &content_object) {
  uint32_t pkt_size =
      (uint32_t)(content_object.headerSize() + content_object.payloadSize());
  avg_packet_size_ = (MOVING_AVG_ALPHA * avg_packet_size_) +
                     ((1 - MOVING_AVG_ALPHA) * pkt_size);
}

void RTCState::updatePathStats(const core::ContentObject &content_object,
                               bool is_nack) {
  // get packet path
  uint32_t path_label = content_object.getPathLabel();
  auto path_it = path_table_.find(path_label);

  if (path_it == path_table_.end()) {
    // found a new path
    std::shared_ptr<RTCDataPath> newPath =
        std::make_shared<RTCDataPath>(path_label);
    auto ret = path_table_.insert(
        std::pair<uint32_t, std::shared_ptr<RTCDataPath>>(path_label, newPath));
    path_it = ret.first;
  }

  auto path = path_it->second;

  // compute rtt
  uint32_t seq = content_object.getName().getSuffix();
  uint64_t interest_sent_time = getInterestSentTime(seq);
  if (interest_sent_time == 0)
    return;  // this should not happen,
             // it means that we are processing an interest
             // that is not pending

  uint64_t now = utils::SteadyTime::nowMs().count();

  uint64_t RTT = now - interest_sent_time;

  path->insertRttSample(utils::SteadyTime::Milliseconds(RTT), false);

  // compute OWD (the first part of the nack and data packet header are the
  // same, so we cast to data data packet)
  core::ParamsRTC params = RTCState::getDataParams(content_object);
  int64_t OWD = now - params.timestamp;
  path->insertOwdSample(OWD);

  // compute IAT or set path to producer
  if (!is_nack) {
    // compute the iat only for the content packets
    uint32_t segment_number = content_object.getName().getSuffix();
    path->computeInterArrivalGap(segment_number);
    if (!path->pathToProducer()) received_data_from_cache_++;
  } else {
    path->receivedNack();
  }
}

void RTCState::updateLossRate(bool in_sync) {
  last_round_loss_rate_ = loss_rate_;
  loss_rate_ = 0.0;

  uint32_t number_theorically_received_packets_ =
      highest_seq_received_ - first_seq_in_round_;

  // XXX this may be quite inefficient if the rate is high
  // maybe is better to iterate over the set?

  uint32_t fec_packets = 0;
  for (uint32_t i = (first_seq_in_round_ + 1); i < highest_seq_received_; i++) {
    PacketState state = getPacketState(i);
    if (state == PacketState::SKIPPED) {
      if (number_theorically_received_packets_ > 0)
        number_theorically_received_packets_--;
    }
    if (indexer_->isFec(i)) fec_packets++;
  }
  if (indexer_->isFec(highest_seq_received_)) fec_packets++;

  // in this case no new packet was received after the previous round, avoid
  // division by 0
  if (number_theorically_received_packets_ == 0 && packets_lost_ == 0) return;

  if (number_theorically_received_packets_ != 0)
    loss_rate_ = (double)((double)(packets_lost_) /
                          (double)number_theorically_received_packets_);
  else
    // we didn't receive anything except NACKs that triggered losses
    loss_rate_ = 1.0;

  if (avg_loss_rate_ == -1.0)
    avg_loss_rate_ = loss_rate_;
  else
    avg_loss_rate_ =
        avg_loss_rate_ * MOVING_AVG_ALPHA + loss_rate_ * (1 - MOVING_AVG_ALPHA);

  // update counters for loss rate per second
  total_expected_packets_ += number_theorically_received_packets_;
  lost_per_sec_ += packets_lost_;

  if (in_sync) {
    // update counters for residual losses
    // fec packets are not sent to the app so we don't want to count them here
    expected_packets_ +=
        ((highest_seq_received_ - first_seq_in_round_) - fec_packets);
  } else {
    expected_packets_ = 0;
    packets_sent_to_app_ = 0;
  }

  if (rounds_from_last_compute_ >= (MILLI_IN_A_SEC / ROUND_LEN)) {
    // compute loss rate per second
    if (lost_per_sec_ > total_expected_packets_)
      lost_per_sec_ = total_expected_packets_;

    if (total_expected_packets_ == 0)
      per_sec_loss_rate_ = 0;
    else
      per_sec_loss_rate_ =
          (double)((double)(lost_per_sec_) / (double)total_expected_packets_);

    loss_history_.pushBack(per_sec_loss_rate_);

    if (in_sync && expected_packets_ != 0) {
      // compute residual loss rate
      if (packets_sent_to_app_ > expected_packets_) {
        // this may happen if we get packet from the prev bin that get recovered
        // on the current one
        packets_sent_to_app_ = expected_packets_;
      }

      residual_loss_rate_ =
          1.0 - ((double)packets_sent_to_app_ / (double)expected_packets_);
      if (residual_loss_rate_ < 0.0) residual_loss_rate_ = 0.0;
    }

    lost_per_sec_ = 0;
    total_expected_packets_ = 0;
    expected_packets_ = 0;
    packets_sent_to_app_ = 0;
    rounds_from_last_compute_ = 0;
  }

  rounds_from_last_compute_++;
}

void RTCState::dataToBeReceived(uint32_t seq) {
  addToPacketCache(seq, PacketState::TO_BE_RECEIVED);
}

void RTCState::updateHighestSeqReceived(uint32_t seq) {
  if (seq > highest_seq_received_) highest_seq_received_ = seq;
}

void RTCState::addRecvOrLost(uint32_t seq, PacketState state) {
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    pending_interests_.erase(it);
    if (indexer_->isFec(seq)) pending_fec_pkt_--;
  }

  addToPacketCache(seq, state);

  // keep track of the last packet received/lost
  // without holes.
  if (highest_seq_received_in_order_ < last_seq_nacked_) {
    highest_seq_received_in_order_ = last_seq_nacked_;
  }

  if ((highest_seq_received_in_order_ + 1) == seq) {
    highest_seq_received_in_order_ = seq;
  } else if (seq <= highest_seq_received_in_order_) {
    // here we do nothing
  } else if (seq > highest_seq_received_in_order_) {
    // 1) there is a gap in the sequence so we do not update
    // highest_seq_received_in_order_
    // 2) all the packets from highest_seq_received_in_order_ to seq are
    // received or lost or are fec packetis. In this case we increase
    // highest_seq_received_in_order_ until we find an hole in the sequence

    for (uint32_t i = highest_seq_received_in_order_ + 1; i <= seq; i++) {
      PacketState state = getPacketState(i);
      if ((state == PacketState::UNKNOWN || state == PacketState::LOST)) {
        if (indexer_->isFec(i)) {
          // this is a fec packet and we don't care to receive it
          // however we may need to increse the number or lost packets
          // XXX: in case we want to use rtx to recover fec packets,
          // this may prevent to detect a packet loss and no rtx will be sent
          if (TRANSPORT_EXPECT_TRUE(i >= first_interest_sent_seq_)) {
            onLossDetected(i);
          }
        } else {
          // this is a data packet and we need to get it
          break;
        }
      }
      // this packet is in order so we can update the
      // highest_seq_received_in_order_
      highest_seq_received_in_order_ = i;
    }
  }
}

void RTCState::setInitRttTimer(uint32_t wait) {
  init_rtt_timer_->cancel();
  init_rtt_timer_->expires_from_now(std::chrono::milliseconds(wait));

  std::weak_ptr<RTCState> self = shared_from_this();
  init_rtt_timer_->async_wait([self](const std::error_code &ec) {
    if (ec) return;

    if (auto ptr = self.lock()) {
      ptr->checkInitRttTimer();
    }
  });
}

void RTCState::checkInitRttTimer() {
  if (received_probes_ < INIT_RTT_MIN_PROBES_TO_RECV ||
      probe_handler_->getProbeLossRate() == 1.0) {
    // we didn't received enough probes or they were not valid, restart
    received_probes_ = 0;
    probe_handler_->setSuffixRange(MIN_INIT_PROBE_SEQ, MAX_INIT_PROBE_SEQ);
    probe_handler_->setProbes(INIT_RTT_PROBE_INTERVAL, INIT_RTT_PROBES);
    probe_handler_->sendProbes();
    setInitRttTimer(INIT_RTT_PROBE_RESTART);
    return;
  }

  init_rtt_ = true;
  main_path_->roundEnd();
  loss_history_.pushBack(probe_handler_->getProbeLossRate());

  probe_handler_->setSuffixRange(MIN_RTT_PROBE_SEQ, MAX_RTT_PROBE_SEQ);
  probe_handler_->setProbes(RTT_PROBE_INTERVAL, 0);
  probe_handler_->sendProbes();

  // init last_seq_nacked_. skip packets that may come from the cache
  double prod_rate = getProducerRate();
  double rtt = (double)getMinRTT() / MILLI_IN_A_SEC;
  double packet_size = getAveragePacketSize();
  uint32_t pkt_in_rtt_ = std::floor(((prod_rate / packet_size) * rtt));
  last_seq_nacked_ = last_production_seq_ + pkt_in_rtt_;

  discovered_rtt_callback_();
}

core::ParamsRTC RTCState::getProbeParams(const core::ContentObject &probe) {
  uint32_t seq = probe.getName().getSuffix();
  core::ParamsRTC params;

  switch (ProbeHandler::getProbeType(seq)) {
    case ProbeType::INIT: {
      core::ContentObjectManifest manifest(
          const_cast<core::ContentObject &>(probe).shared_from_this());
      manifest.decode();
      params = manifest.getParamsRTC();
      break;
    }
    case ProbeType::RTT: {
      struct nack_packet_t *probe_pkt =
          (struct nack_packet_t *)probe.getPayload()->data();
      params = core::ParamsRTC{
          .timestamp = probe_pkt->getTimestamp(),
          .prod_rate = probe_pkt->getProductionRate(),
          .prod_seg = probe_pkt->getProductionSegment(),
      };
      break;
    }
    default:
      break;
  }

  return params;
}

core::ParamsRTC RTCState::getDataParams(const core::ContentObject &data) {
  core::ParamsRTC params;

  switch (data.getPayloadType()) {
    case core::PayloadType::DATA: {
      struct data_packet_t *data_pkt =
          (struct data_packet_t *)data.getPayload()->data();
      params = core::ParamsRTC{
          .timestamp = data_pkt->getTimestamp(),
          .prod_rate = data_pkt->getProductionRate(),
          .prod_seg = data.getName().getSuffix(),
      };
      break;
    }
    case core::PayloadType::MANIFEST: {
      core::ContentObjectManifest manifest(
          const_cast<core::ContentObject &>(data).shared_from_this());
      manifest.decode();
      params = manifest.getParamsRTC();
      break;
    }
    default:
      break;
  }

  return params;
}

}  // namespace rtc

}  // namespace protocol

}  // namespace transport