1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// FROM
// https://source.chromium.org/chromium/chromium/src/+/master:third_party/webrtc/modules/congestion_controller/goog_cc/trendline_estimator.cc
#include "trendline_estimator.h"
#include <math.h>
#include <algorithm>
#include <string>
namespace transport {
namespace protocol {
namespace rtc {
// Parameters for linear least squares fit of regression line to noisy data.
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
// const char kBweWindowSizeInPacketsExperiment[] =
// "WebRTC-BweWindowSizeInPackets";
/*size_t ReadTrendlineFilterWindowSize(
const WebRtcKeyValueConfig* key_value_config) {
std::string experiment_string =
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment);
size_t window_size;
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%zu", &window_size);
if (parsed_values == 1) {
if (window_size > 1)
return window_size;
RTC_LOG(WARNING) << "Window size must be greater than 1.";
}
RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweWindowSizeInPackets"
" experiment from field trial string. Using default.";
return TrendlineEstimatorSettings::kDefaultTrendlineWindowSize;
}
*/
OptionalDouble LinearFitSlope(
const std::deque<TrendlineEstimator::PacketTiming>& packets) {
// RTC_DCHECK(packets.size() >= 2);
// Compute the "center of mass".
double sum_x = 0;
double sum_y = 0;
for (const auto& packet : packets) {
sum_x += packet.arrival_time_ms;
sum_y += packet.smoothed_delay_ms;
}
double x_avg = sum_x / packets.size();
double y_avg = sum_y / packets.size();
// Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
double numerator = 0;
double denominator = 0;
for (const auto& packet : packets) {
double x = packet.arrival_time_ms;
double y = packet.smoothed_delay_ms;
numerator += (x - x_avg) * (y - y_avg);
denominator += (x - x_avg) * (x - x_avg);
}
if (denominator == 0) return OptionalDouble();
return OptionalDouble(numerator / denominator);
}
OptionalDouble ComputeSlopeCap(
const std::deque<TrendlineEstimator::PacketTiming>& packets,
const TrendlineEstimatorSettings& settings) {
/*RTC_DCHECK(1 <= settings.beginning_packets &&
settings.beginning_packets < packets.size());
RTC_DCHECK(1 <= settings.end_packets &&
settings.end_packets < packets.size());
RTC_DCHECK(settings.beginning_packets + settings.end_packets <=
packets.size());*/
TrendlineEstimator::PacketTiming early = packets[0];
for (size_t i = 1; i < settings.beginning_packets; ++i) {
if (packets[i].raw_delay_ms < early.raw_delay_ms) early = packets[i];
}
size_t late_start = packets.size() - settings.end_packets;
TrendlineEstimator::PacketTiming late = packets[late_start];
for (size_t i = late_start + 1; i < packets.size(); ++i) {
if (packets[i].raw_delay_ms < late.raw_delay_ms) late = packets[i];
}
if (late.arrival_time_ms - early.arrival_time_ms < 1) {
return OptionalDouble();
}
return OptionalDouble((late.raw_delay_ms - early.raw_delay_ms) /
(late.arrival_time_ms - early.arrival_time_ms) +
settings.cap_uncertainty);
}
constexpr double kMaxAdaptOffsetMs = 15.0;
constexpr double kOverUsingTimeThreshold = 10;
constexpr int kMinNumDeltas = 60;
constexpr int kDeltaCounterMax = 1000;
//} // namespace
constexpr char TrendlineEstimatorSettings::kKey[];
TrendlineEstimatorSettings::TrendlineEstimatorSettings(
/*const WebRtcKeyValueConfig* key_value_config*/) {
/*if (absl::StartsWith(
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment),
"Enabled")) {
window_size = ReadTrendlineFilterWindowSize(key_value_config);
}
Parser()->Parse(key_value_config->Lookup(TrendlineEstimatorSettings::kKey));*/
window_size = kDefaultTrendlineWindowSize;
enable_cap = false;
beginning_packets = end_packets = 0;
cap_uncertainty = 0.0;
/*if (window_size < 10 || 200 < window_size) {
RTC_LOG(LS_WARNING) << "Window size must be between 10 and 200 packets";
window_size = kDefaultTrendlineWindowSize;
}
if (enable_cap) {
if (beginning_packets < 1 || end_packets < 1 ||
beginning_packets > window_size || end_packets > window_size) {
RTC_LOG(LS_WARNING) << "Size of beginning and end must be between 1 and "
<< window_size;
enable_cap = false;
beginning_packets = end_packets = 0;
cap_uncertainty = 0.0;
}
if (beginning_packets + end_packets > window_size) {
RTC_LOG(LS_WARNING)
<< "Size of beginning plus end can't exceed the window size";
enable_cap = false;
beginning_packets = end_packets = 0;
cap_uncertainty = 0.0;
}
if (cap_uncertainty < 0.0 || 0.025 < cap_uncertainty) {
RTC_LOG(LS_WARNING) << "Cap uncertainty must be between 0 and 0.025";
cap_uncertainty = 0.0;
}
}*/
}
/*std::unique_ptr<StructParametersParser> TrendlineEstimatorSettings::Parser() {
return StructParametersParser::Create("sort", &enable_sort, //
"cap", &enable_cap, //
"beginning_packets",
&beginning_packets, //
"end_packets", &end_packets, //
"cap_uncertainty", &cap_uncertainty, //
"window_size", &window_size);
}*/
TrendlineEstimator::TrendlineEstimator(
/*const WebRtcKeyValueConfig* key_value_config,
NetworkStatePredictor* network_state_predictor*/)
: settings_(),
smoothing_coef_(kDefaultTrendlineSmoothingCoeff),
threshold_gain_(kDefaultTrendlineThresholdGain),
num_of_deltas_(0),
first_arrival_time_ms_(-1),
accumulated_delay_(0),
smoothed_delay_(0),
delay_hist_(),
k_up_(0.0087),
k_down_(0.039),
overusing_time_threshold_(kOverUsingTimeThreshold),
threshold_(12.5),
prev_modified_trend_(NAN),
last_update_ms_(-1),
prev_trend_(0.0),
time_over_using_(-1),
overuse_counter_(0),
hypothesis_(BandwidthUsage::kBwNormal){
// hypothesis_predicted_(BandwidthUsage::kBwNormal){//},
// network_state_predictor_(network_state_predictor) {
/* RTC_LOG(LS_INFO)
<< "Using Trendline filter for delay change estimation with settings "
<< settings_.Parser()->Encode() << " and "
// << (network_state_predictor_ ? "injected" : "no")
<< " network state predictor";*/
}
TrendlineEstimator::~TrendlineEstimator() {}
void TrendlineEstimator::UpdateTrendline(double recv_delta_ms,
double send_delta_ms,
int64_t send_time_ms,
int64_t arrival_time_ms,
size_t packet_size) {
const double delta_ms = recv_delta_ms - send_delta_ms;
++num_of_deltas_;
num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax);
if (first_arrival_time_ms_ == -1) first_arrival_time_ms_ = arrival_time_ms;
// Exponential backoff filter.
accumulated_delay_ += delta_ms;
// BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms,
// accumulated_delay_);
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
(1 - smoothing_coef_) * accumulated_delay_;
// BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms,
// smoothed_delay_);
// Maintain packet window
delay_hist_.emplace_back(
static_cast<double>(arrival_time_ms - first_arrival_time_ms_),
smoothed_delay_, accumulated_delay_);
if (settings_.enable_sort) {
for (size_t i = delay_hist_.size() - 1;
i > 0 &&
delay_hist_[i].arrival_time_ms < delay_hist_[i - 1].arrival_time_ms;
--i) {
std::swap(delay_hist_[i], delay_hist_[i - 1]);
}
}
if (delay_hist_.size() > settings_.window_size) delay_hist_.pop_front();
// Simple linear regression.
double trend = prev_trend_;
if (delay_hist_.size() == settings_.window_size) {
// Update trend_ if it is possible to fit a line to the data. The delay
// trend can be seen as an estimate of (send_rate - capacity)/capacity.
// 0 < trend < 1 -> the delay increases, queues are filling up
// trend == 0 -> the delay does not change
// trend < 0 -> the delay decreases, queues are being emptied
OptionalDouble trendO = LinearFitSlope(delay_hist_);
if (trendO.has_value()) trend = trendO.value();
if (settings_.enable_cap) {
OptionalDouble cap = ComputeSlopeCap(delay_hist_, settings_);
// We only use the cap to filter out overuse detections, not
// to detect additional underuses.
if (trend >= 0 && cap.has_value() && trend > cap.value()) {
trend = cap.value();
}
}
}
// BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trend);
Detect(trend, send_delta_ms, arrival_time_ms);
}
void TrendlineEstimator::Update(double recv_delta_ms, double send_delta_ms,
int64_t send_time_ms, int64_t arrival_time_ms,
size_t packet_size, bool calculated_deltas) {
if (calculated_deltas) {
UpdateTrendline(recv_delta_ms, send_delta_ms, send_time_ms, arrival_time_ms,
packet_size);
}
/*if (network_state_predictor_) {
hypothesis_predicted_ = network_state_predictor_->Update(
send_time_ms, arrival_time_ms, hypothesis_);
}*/
}
BandwidthUsage TrendlineEstimator::State() const {
return /*network_state_predictor_ ? hypothesis_predicted_ :*/ hypothesis_;
}
void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) {
/*if (num_of_deltas_ < 2) {
hypothesis_ = BandwidthUsage::kBwNormal;
return;
}*/
const double modified_trend =
std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_;
prev_modified_trend_ = modified_trend;
// BWE_TEST_LOGGING_PLOT(1, "T", now_ms, modified_trend);
// BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_);
if (modified_trend > threshold_) {
if (time_over_using_ == -1) {
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
time_over_using_ = ts_delta / 2;
} else {
// Increment timer
time_over_using_ += ts_delta;
}
overuse_counter_++;
if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) {
if (trend >= prev_trend_) {
time_over_using_ = 0;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwOverusing;
}
}
} else if (modified_trend < -threshold_) {
time_over_using_ = -1;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwUnderusing;
} else {
time_over_using_ = -1;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwNormal;
}
prev_trend_ = trend;
UpdateThreshold(modified_trend, now_ms);
}
void TrendlineEstimator::UpdateThreshold(double modified_trend,
int64_t now_ms) {
if (last_update_ms_ == -1) last_update_ms_ = now_ms;
if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) {
// Avoid adapting the threshold to big latency spikes, caused e.g.,
// by a sudden capacity drop.
last_update_ms_ = now_ms;
return;
}
const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_;
const int64_t kMaxTimeDeltaMs = 100;
int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs);
threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms;
if (threshold_ < 6.f) threshold_ = 6.f;
if (threshold_ > 600.f) threshold_ = 600.f;
// threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f);
last_update_ms_ = now_ms;
}
} // namespace rtc
} // end namespace protocol
} // end namespace transport
|