aboutsummaryrefslogtreecommitdiffstats
path: root/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch
diff options
context:
space:
mode:
Diffstat (limited to 'build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch')
-rw-r--r--build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch671
1 files changed, 671 insertions, 0 deletions
diff --git a/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch b/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch
new file mode 100644
index 00000000000..009a2c2854d
--- /dev/null
+++ b/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch
@@ -0,0 +1,671 @@
+From b1138c10d2cd5938f4c0316e0b132caeb7e869dd Mon Sep 17 00:00:00 2001
+From: Leyi Rong <leyi.rong@intel.com>
+Date: Wed, 8 Apr 2020 14:22:03 +0800
+Subject: [DPDK 10/17] net/iavf: flexible Rx descriptor support in AVX path
+
+Support flexible Rx descriptor format in AVX
+path of iAVF PMD.
+
+Signed-off-by: Leyi Rong <leyi.rong@intel.com>
+---
+ drivers/net/iavf/iavf_rxtx.c | 24 +-
+ drivers/net/iavf/iavf_rxtx.h | 6 +
+ drivers/net/iavf/iavf_rxtx_vec_avx2.c | 550 +++++++++++++++++++++++++-
+ 3 files changed, 570 insertions(+), 10 deletions(-)
+
+diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
+index 67297dcb7..34c41d104 100644
+--- a/drivers/net/iavf/iavf_rxtx.c
++++ b/drivers/net/iavf/iavf_rxtx.c
+@@ -2081,16 +2081,28 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
+ "Using %sVector Scattered Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+- dev->rx_pkt_burst = use_avx2 ?
+- iavf_recv_scattered_pkts_vec_avx2 :
+- iavf_recv_scattered_pkts_vec;
++ if (vf->vf_res->vf_cap_flags &
++ VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
++ dev->rx_pkt_burst = use_avx2 ?
++ iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
++ iavf_recv_scattered_pkts_vec;
++ else
++ dev->rx_pkt_burst = use_avx2 ?
++ iavf_recv_scattered_pkts_vec_avx2 :
++ iavf_recv_scattered_pkts_vec;
+ } else {
+ PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+- dev->rx_pkt_burst = use_avx2 ?
+- iavf_recv_pkts_vec_avx2 :
+- iavf_recv_pkts_vec;
++ if (vf->vf_res->vf_cap_flags &
++ VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
++ dev->rx_pkt_burst = use_avx2 ?
++ iavf_recv_pkts_vec_avx2_flex_rxd :
++ iavf_recv_pkts_vec;
++ else
++ dev->rx_pkt_burst = use_avx2 ?
++ iavf_recv_pkts_vec_avx2 :
++ iavf_recv_pkts_vec;
+ }
+
+ return;
+diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h
+index f33d1df41..8e1db2588 100644
+--- a/drivers/net/iavf/iavf_rxtx.h
++++ b/drivers/net/iavf/iavf_rxtx.h
+@@ -413,9 +413,15 @@ uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+ uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
++uint16_t iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue,
++ struct rte_mbuf **rx_pkts,
++ uint16_t nb_pkts);
+ uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
++uint16_t iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
++ struct rte_mbuf **rx_pkts,
++ uint16_t nb_pkts);
+ uint16_t iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+ uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
+index 2587083d8..b23188fd3 100644
+--- a/drivers/net/iavf/iavf_rxtx_vec_avx2.c
++++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
+@@ -11,14 +11,16 @@
+ #endif
+
+ static inline void
+-iavf_rxq_rearm(struct iavf_rx_queue *rxq)
++iavf_rxq_rearm(struct iavf_rx_queue *rxq, volatile union iavf_rx_desc *rxdp)
+ {
+ int i;
+ uint16_t rx_id;
+- volatile union iavf_rx_desc *rxdp;
+ struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
+
+- rxdp = rxq->rx_ring + rxq->rxrearm_start;
++ if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1) {
++ volatile union iavf_rx_flex_desc *rxdp =
++ (union iavf_rx_flex_desc *)rxdp;
++ }
+
+ /* Pull 'n' more MBUFs into the software ring */
+ if (rte_mempool_get_bulk(rxq->mp,
+@@ -160,7 +162,7 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
+ * of time to act
+ */
+ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
+- iavf_rxq_rearm(rxq);
++ iavf_rxq_rearm(rxq, rxq->rx_ring + rxq->rxrearm_start);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+@@ -614,6 +616,465 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
+ return received;
+ }
+
++static inline uint16_t
++_iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq,
++ struct rte_mbuf **rx_pkts,
++ uint16_t nb_pkts, uint8_t *split_packet)
++{
++#define IAVF_DESCS_PER_LOOP_AVX 8
++
++ const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
++
++ const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
++ 0, rxq->mbuf_initializer);
++ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
++ volatile union iavf_rx_flex_desc *rxdp =
++ (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
++
++ rte_prefetch0(rxdp);
++
++ /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
++ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
++
++ /* See if we need to rearm the RX queue - gives the prefetch a bit
++ * of time to act
++ */
++ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
++ /* iavf_rxq_rearm(rxq); */
++ iavf_rxq_rearm(rxq, rxq->rx_ring + rxq->rxrearm_start);
++
++ /* Before we start moving massive data around, check to see if
++ * there is actually a packet available
++ */
++ if (!(rxdp->wb.status_error0 &
++ rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
++ return 0;
++
++ /* constants used in processing loop */
++ const __m256i crc_adjust =
++ _mm256_set_epi16
++ (/* first descriptor */
++ 0, 0, 0, /* ignore non-length fields */
++ -rxq->crc_len, /* sub crc on data_len */
++ 0, /* ignore high-16bits of pkt_len */
++ -rxq->crc_len, /* sub crc on pkt_len */
++ 0, 0, /* ignore pkt_type field */
++ /* second descriptor */
++ 0, 0, 0, /* ignore non-length fields */
++ -rxq->crc_len, /* sub crc on data_len */
++ 0, /* ignore high-16bits of pkt_len */
++ -rxq->crc_len, /* sub crc on pkt_len */
++ 0, 0 /* ignore pkt_type field */
++ );
++
++ /* 8 packets DD mask, LSB in each 32-bit value */
++ const __m256i dd_check = _mm256_set1_epi32(1);
++
++ /* 8 packets EOP mask, second-LSB in each 32-bit value */
++ const __m256i eop_check = _mm256_slli_epi32(dd_check,
++ IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
++
++ /* mask to shuffle from desc. to mbuf (2 descriptors)*/
++ const __m256i shuf_msk =
++ _mm256_set_epi8
++ (/* first descriptor */
++ 15, 14,
++ 13, 12, /* octet 12~15, 32 bits rss */
++ 11, 10, /* octet 10~11, 16 bits vlan_macip */
++ 5, 4, /* octet 4~5, 16 bits data_len */
++ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
++ 5, 4, /* octet 4~5, 16 bits pkt_len */
++ 0xFF, 0xFF, /* pkt_type set as unknown */
++ 0xFF, 0xFF, /*pkt_type set as unknown */
++ /* second descriptor */
++ 15, 14,
++ 13, 12, /* octet 12~15, 32 bits rss */
++ 11, 10, /* octet 10~11, 16 bits vlan_macip */
++ 5, 4, /* octet 4~5, 16 bits data_len */
++ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
++ 5, 4, /* octet 4~5, 16 bits pkt_len */
++ 0xFF, 0xFF, /* pkt_type set as unknown */
++ 0xFF, 0xFF /*pkt_type set as unknown */
++ );
++ /**
++ * compile-time check the above crc and shuffle layout is correct.
++ * NOTE: the first field (lowest address) is given last in set_epi
++ * calls above.
++ */
++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
++
++ /* Status/Error flag masks */
++ /**
++ * mask everything except Checksum Reports, RSS indication
++ * and VLAN indication.
++ * bit6:4 for IP/L4 checksum errors.
++ * bit12 is for RSS indication.
++ * bit13 is for VLAN indication.
++ */
++ const __m256i flags_mask =
++ _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
++ /**
++ * data to be shuffled by the result of the flags mask shifted by 4
++ * bits. This gives use the l3_l4 flags.
++ */
++ const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
++ /* shift right 1 bit to make sure it not exceed 255 */
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
++ PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
++ PKT_RX_IP_CKSUM_GOOD) >> 1,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
++ PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
++ PKT_RX_IP_CKSUM_GOOD) >> 1,
++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
++ /* second 128-bits */
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
++ PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
++ PKT_RX_IP_CKSUM_GOOD) >> 1,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
++ PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
++ PKT_RX_IP_CKSUM_GOOD) >> 1,
++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
++ const __m256i cksum_mask =
++ _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
++ PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
++ PKT_RX_EIP_CKSUM_BAD);
++ /**
++ * data to be shuffled by result of flag mask, shifted down 12.
++ * If RSS(bit12)/VLAN(bit13) are set,
++ * shuffle moves appropriate flags in place.
++ */
++ const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
++ 0, 0, 0, 0,
++ 0, 0, 0, 0,
++ PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
++ PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
++ PKT_RX_RSS_HASH, 0,
++ /* end up 128-bits */
++ 0, 0, 0, 0,
++ 0, 0, 0, 0,
++ 0, 0, 0, 0,
++ PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
++ PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
++ PKT_RX_RSS_HASH, 0);
++
++ uint16_t i, received;
++
++ for (i = 0, received = 0; i < nb_pkts;
++ i += IAVF_DESCS_PER_LOOP_AVX,
++ rxdp += IAVF_DESCS_PER_LOOP_AVX) {
++ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
++ _mm256_storeu_si256((void *)&rx_pkts[i],
++ _mm256_loadu_si256((void *)&sw_ring[i]));
++#ifdef RTE_ARCH_X86_64
++ _mm256_storeu_si256
++ ((void *)&rx_pkts[i + 4],
++ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
++#endif
++
++ __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
++
++ const __m128i raw_desc7 =
++ _mm_load_si128((void *)(rxdp + 7));
++ rte_compiler_barrier();
++ const __m128i raw_desc6 =
++ _mm_load_si128((void *)(rxdp + 6));
++ rte_compiler_barrier();
++ const __m128i raw_desc5 =
++ _mm_load_si128((void *)(rxdp + 5));
++ rte_compiler_barrier();
++ const __m128i raw_desc4 =
++ _mm_load_si128((void *)(rxdp + 4));
++ rte_compiler_barrier();
++ const __m128i raw_desc3 =
++ _mm_load_si128((void *)(rxdp + 3));
++ rte_compiler_barrier();
++ const __m128i raw_desc2 =
++ _mm_load_si128((void *)(rxdp + 2));
++ rte_compiler_barrier();
++ const __m128i raw_desc1 =
++ _mm_load_si128((void *)(rxdp + 1));
++ rte_compiler_barrier();
++ const __m128i raw_desc0 =
++ _mm_load_si128((void *)(rxdp + 0));
++
++ raw_desc6_7 =
++ _mm256_inserti128_si256
++ (_mm256_castsi128_si256(raw_desc6),
++ raw_desc7, 1);
++ raw_desc4_5 =
++ _mm256_inserti128_si256
++ (_mm256_castsi128_si256(raw_desc4),
++ raw_desc5, 1);
++ raw_desc2_3 =
++ _mm256_inserti128_si256
++ (_mm256_castsi128_si256(raw_desc2),
++ raw_desc3, 1);
++ raw_desc0_1 =
++ _mm256_inserti128_si256
++ (_mm256_castsi128_si256(raw_desc0),
++ raw_desc1, 1);
++
++ if (split_packet) {
++ int j;
++
++ for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
++ rte_mbuf_prefetch_part2(rx_pkts[i + j]);
++ }
++
++ /**
++ * convert descriptors 4-7 into mbufs, re-arrange fields.
++ * Then write into the mbuf.
++ */
++ __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
++ __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
++
++ mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
++ mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
++ /**
++ * to get packet types, ptype is located in bit16-25
++ * of each 128bits
++ */
++ const __m256i ptype_mask =
++ _mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
++ const __m256i ptypes6_7 =
++ _mm256_and_si256(raw_desc6_7, ptype_mask);
++ const __m256i ptypes4_5 =
++ _mm256_and_si256(raw_desc4_5, ptype_mask);
++ const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
++ const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
++ const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
++ const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
++
++ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
++ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
++ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
++ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
++ /* merge the status bits into one register */
++ const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
++ raw_desc4_5);
++
++ /**
++ * convert descriptors 0-3 into mbufs, re-arrange fields.
++ * Then write into the mbuf.
++ */
++ __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
++ __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
++
++ mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
++ mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
++ /**
++ * to get packet types, ptype is located in bit16-25
++ * of each 128bits
++ */
++ const __m256i ptypes2_3 =
++ _mm256_and_si256(raw_desc2_3, ptype_mask);
++ const __m256i ptypes0_1 =
++ _mm256_and_si256(raw_desc0_1, ptype_mask);
++ const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
++ const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
++ const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
++ const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
++
++ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
++ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
++ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
++ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
++ /* merge the status bits into one register */
++ const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
++ raw_desc0_1);
++
++ /**
++ * take the two sets of status bits and merge to one
++ * After merge, the packets status flags are in the
++ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
++ */
++ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
++ status0_3);
++
++ /* now do flag manipulation */
++
++ /* get only flag/error bits we want */
++ const __m256i flag_bits =
++ _mm256_and_si256(status0_7, flags_mask);
++ /**
++ * l3_l4_error flags, shuffle, then shift to correct adjustment
++ * of flags in flags_shuf, and finally mask out extra bits
++ */
++ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
++ _mm256_srli_epi32(flag_bits, 4));
++ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
++ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
++ /* set rss and vlan flags */
++ const __m256i rss_vlan_flag_bits =
++ _mm256_srli_epi32(flag_bits, 12);
++ const __m256i rss_vlan_flags =
++ _mm256_shuffle_epi8(rss_vlan_flags_shuf,
++ rss_vlan_flag_bits);
++
++ /* merge flags */
++ const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
++ rss_vlan_flags);
++ /**
++ * At this point, we have the 8 sets of flags in the low 16-bits
++ * of each 32-bit value in vlan0.
++ * We want to extract these, and merge them with the mbuf init
++ * data so we can do a single write to the mbuf to set the flags
++ * and all the other initialization fields. Extracting the
++ * appropriate flags means that we have to do a shift and blend
++ * for each mbuf before we do the write. However, we can also
++ * add in the previously computed rx_descriptor fields to
++ * make a single 256-bit write per mbuf
++ */
++ /* check the structure matches expectations */
++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
++ offsetof(struct rte_mbuf, rearm_data) + 8);
++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
++ RTE_ALIGN(offsetof(struct rte_mbuf,
++ rearm_data),
++ 16));
++ /* build up data and do writes */
++ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
++ rearm6, rearm7;
++ rearm6 = _mm256_blend_epi32(mbuf_init,
++ _mm256_slli_si256(mbuf_flags, 8),
++ 0x04);
++ rearm4 = _mm256_blend_epi32(mbuf_init,
++ _mm256_slli_si256(mbuf_flags, 4),
++ 0x04);
++ rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
++ rearm0 = _mm256_blend_epi32(mbuf_init,
++ _mm256_srli_si256(mbuf_flags, 4),
++ 0x04);
++ /* permute to add in the rx_descriptor e.g. rss fields */
++ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
++ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
++ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
++ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
++ /* write to mbuf */
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
++ rearm6);
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
++ rearm4);
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
++ rearm2);
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
++ rearm0);
++
++ /* repeat for the odd mbufs */
++ const __m256i odd_flags =
++ _mm256_castsi128_si256
++ (_mm256_extracti128_si256(mbuf_flags, 1));
++ rearm7 = _mm256_blend_epi32(mbuf_init,
++ _mm256_slli_si256(odd_flags, 8),
++ 0x04);
++ rearm5 = _mm256_blend_epi32(mbuf_init,
++ _mm256_slli_si256(odd_flags, 4),
++ 0x04);
++ rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
++ rearm1 = _mm256_blend_epi32(mbuf_init,
++ _mm256_srli_si256(odd_flags, 4),
++ 0x04);
++ /* since odd mbufs are already in hi 128-bits use blend */
++ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
++ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
++ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
++ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
++ /* again write to mbufs */
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
++ rearm7);
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
++ rearm5);
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
++ rearm3);
++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
++ rearm1);
++
++ /* extract and record EOP bit */
++ if (split_packet) {
++ const __m128i eop_mask =
++ _mm_set1_epi16(1 <<
++ IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
++ const __m256i eop_bits256 = _mm256_and_si256(status0_7,
++ eop_check);
++ /* pack status bits into a single 128-bit register */
++ const __m128i eop_bits =
++ _mm_packus_epi32
++ (_mm256_castsi256_si128(eop_bits256),
++ _mm256_extractf128_si256(eop_bits256,
++ 1));
++ /**
++ * flip bits, and mask out the EOP bit, which is now
++ * a split-packet bit i.e. !EOP, rather than EOP one.
++ */
++ __m128i split_bits = _mm_andnot_si128(eop_bits,
++ eop_mask);
++ /**
++ * eop bits are out of order, so we need to shuffle them
++ * back into order again. In doing so, only use low 8
++ * bits, which acts like another pack instruction
++ * The original order is (hi->lo): 1,3,5,7,0,2,4,6
++ * [Since we use epi8, the 16-bit positions are
++ * multiplied by 2 in the eop_shuffle value.]
++ */
++ __m128i eop_shuffle =
++ _mm_set_epi8(/* zero hi 64b */
++ 0xFF, 0xFF, 0xFF, 0xFF,
++ 0xFF, 0xFF, 0xFF, 0xFF,
++ /* move values to lo 64b */
++ 8, 0, 10, 2,
++ 12, 4, 14, 6);
++ split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
++ *(uint64_t *)split_packet =
++ _mm_cvtsi128_si64(split_bits);
++ split_packet += IAVF_DESCS_PER_LOOP_AVX;
++ }
++
++ /* perform dd_check */
++ status0_7 = _mm256_and_si256(status0_7, dd_check);
++ status0_7 = _mm256_packs_epi32(status0_7,
++ _mm256_setzero_si256());
++
++ uint64_t burst = __builtin_popcountll
++ (_mm_cvtsi128_si64
++ (_mm256_extracti128_si256
++ (status0_7, 1)));
++ burst += __builtin_popcountll
++ (_mm_cvtsi128_si64
++ (_mm256_castsi256_si128(status0_7)));
++ received += burst;
++ if (burst != IAVF_DESCS_PER_LOOP_AVX)
++ break;
++ }
++
++ /* update tail pointers */
++ rxq->rx_tail += received;
++ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
++ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
++ rxq->rx_tail--;
++ received--;
++ }
++ rxq->rxrearm_nb += received;
++ return received;
++}
++
+ /**
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+@@ -625,6 +1086,18 @@ iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
+ }
+
++/**
++ * Notice:
++ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
++ */
++uint16_t
++iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
++ uint16_t nb_pkts)
++{
++ return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts,
++ nb_pkts, NULL);
++}
++
+ /**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+@@ -690,6 +1163,75 @@ iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ rx_pkts + retval, nb_pkts);
+ }
+
++/**
++ * vPMD receive routine that reassembles single burst of
++ * 32 scattered packets for flex RxD
++ * Notice:
++ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
++ */
++static uint16_t
++iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue,
++ struct rte_mbuf **rx_pkts,
++ uint16_t nb_pkts)
++{
++ struct iavf_rx_queue *rxq = rx_queue;
++ uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
++
++ /* get some new buffers */
++ uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq,
++ rx_pkts, nb_pkts, split_flags);
++ if (nb_bufs == 0)
++ return 0;
++
++ /* happy day case, full burst + no packets to be joined */
++ const uint64_t *split_fl64 = (uint64_t *)split_flags;
++
++ if (!rxq->pkt_first_seg &&
++ split_fl64[0] == 0 && split_fl64[1] == 0 &&
++ split_fl64[2] == 0 && split_fl64[3] == 0)
++ return nb_bufs;
++
++ /* reassemble any packets that need reassembly*/
++ unsigned int i = 0;
++
++ if (!rxq->pkt_first_seg) {
++ /* find the first split flag, and only reassemble then*/
++ while (i < nb_bufs && !split_flags[i])
++ i++;
++ if (i == nb_bufs)
++ return nb_bufs;
++ rxq->pkt_first_seg = rx_pkts[i];
++ }
++ return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
++ &split_flags[i]);
++}
++
++/**
++ * vPMD receive routine that reassembles scattered packets for flex RxD.
++ * Main receive routine that can handle arbitrary burst sizes
++ * Notice:
++ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
++ */
++uint16_t
++iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
++ struct rte_mbuf **rx_pkts,
++ uint16_t nb_pkts)
++{
++ uint16_t retval = 0;
++
++ while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
++ uint16_t burst =
++ iavf_recv_scattered_burst_vec_avx2_flex_rxd
++ (rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
++ retval += burst;
++ nb_pkts -= burst;
++ if (burst < IAVF_VPMD_RX_MAX_BURST)
++ return retval;
++ }
++ return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue,
++ rx_pkts + retval, nb_pkts);
++}
++
+ static inline void
+ iavf_vtx1(volatile struct iavf_tx_desc *txdp,
+ struct rte_mbuf *pkt, uint64_t flags)
+--
+2.17.1
+