aboutsummaryrefslogtreecommitdiffstats
path: root/docs/developer/corefeatures/fib/dataplane.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/developer/corefeatures/fib/dataplane.rst')
-rw-r--r--docs/developer/corefeatures/fib/dataplane.rst100
1 files changed, 100 insertions, 0 deletions
diff --git a/docs/developer/corefeatures/fib/dataplane.rst b/docs/developer/corefeatures/fib/dataplane.rst
new file mode 100644
index 00000000000..94e11d1428c
--- /dev/null
+++ b/docs/developer/corefeatures/fib/dataplane.rst
@@ -0,0 +1,100 @@
+.. _dataplane:
+
+The Data Plane
+---------------
+
+The data-plane data model is a directed, acyclic [#f16]_ graph of heterogeneous objects.
+A packet will forward walk the graph as it is switched. Each object describes
+the actions to perform on the packet. Each object type has an associated VLIB
+graph node. For a packet to forward walk the graph is therefore to move from one
+VLIB node to the next, with each performing the required actions. This is the
+heart of the VPP model.
+
+The data-plane graph is composed of generic data-path objects (DPOs). A parent
+DPO is identified by the tuple:{type,index,next_node}. The *next_node* parameter
+is the index of the VLIB node to which the packets should be sent next, this is
+present to maximise performance - it is important to ensure that the parent does
+not need to be read [#f17]_ whilst processing the child. Specialisations [#f18]_ of the DPO
+perform distinct actions. The most common DPOs and briefly what they represent are:
+
+- Load-balance: a choice in an ECMP set.
+- Adjacency: apply a rewrite and forward through an interface
+- MPLS-label: impose an MPLS label.
+- Lookup: perform another lookup in a different table.
+
+The data-plane graph is derived from the control-plane graph by the objects
+therein 'contributing' a DPO to the data-plane graph. Objects in the data-plane
+contain only the information needed to switch a packet, they are therefore
+simpler, and in memory terms smaller, with the aim to fit one DPO on a single
+cache-line. The derivation from the control plane means that the data-plane
+graph contains only object whose current state can forward packets. For example,
+the difference between a *fib_path_list_t* and a *load_balance_t* is that the former
+expresses the control-plane's desired state, the latter the data-plane available
+state. If some paths in the path-list are unresolved or down, then the
+load-balance will not include them in the forwarding choice.
+
+.. figure:: /_images/fib20fig8.png
+
+Figure 8: DPO contributions for a non-recursive route
+
+Figure 8 shows a simplified view of the control-plane graph indicating those
+objects that contribute DPOs. Also shown are the VLIB node graphs at which the DPO is used.
+
+Each *fib_entry_t* contributes it own *load_balance_t*, for three reasons;
+
+- The result of a lookup in a IPv[46] table is a single 32 bit unsigned integer. This is an index into a memory pool. Consequently the object type must be the same for each result. Some routes will need a load-balance and some will not, but to insert another object in the graph to represent this choice is a waste of cycles, so the load-balance object is always the result. If the route does not have ECMP, then the load-balance has only one choice.
+
+- In order to collect per-route counters, the lookup result must in some way uniquely identify the *fib_entry_t*. A shared load-balance (contributed by the path-list) would not allow this.
+- In the case the *fib_entry_t* has MPLS out labels, and hence a *fib_path_ext_t*, then the load-balance must be per-prefix, since the MPLS labels that are its parents are themselves per-fib_entry_t.
+
+.. figure:: /_images/fib20fig9.png
+
+Figure 9: DPO contribution for a recursive route.
+
+Figure 9 shows the load-balance objects contributed for a recursive route.
+
+.. figure:: /_images/fib20fig10.png
+
+Figure 10: DPO Contributions from labelled recursive routes.
+
+Figure 10 shows the derived data-plane graph for a labelled recursive route.
+There can be as many MPLS-label DPO instances as there are routes multiplied by
+the number of paths per-route. For this reason the mpls-label DPO should be as
+small as possible [#f19]_.
+
+The data-plane graph is constructed by 'stacking' one
+instance of a DPO on another to form the child-parent relationship. When this
+stacking occurs, the necessary VLIB graph arcs are automatically constructed
+from the respected DPO type's registered graph nodes.
+
+The diagrams above show that for any given route the full data-plane graph is
+known before any packet arrives. If that graph is composed of n objects, then the
+packet will visit n nodes and thus incur a forwarding cost of approximately n
+times the graph node cost. This could be reduced if the graph were *collapsed*
+into fewer DPOs and nodes. There are two ways we might consider doing
+this:
+
+- write custom DPOs/nodes for combined functions, e.g. pop MPLS label
+ and lookup in v4 table. This has the disadvantage that the number of
+ such nodes would be, well, combinatorial, and resolving a path via
+ a combined DPO would be more difficult as it would involve a
+ forward walk of the graph to determine what the combination
+ is. However, VPP power users might consider this option for a
+ limited set of their use cases where performance is truly king.
+- collapse multiple levels of load-balancing into one. For example,
+ if there were two levels of load-balancing each with two choices,
+ this could equally be represented by one level with 4 choices.
+
+In either case a disadvantage to collapsing the graph is that it
+removes the indirection objects that provide fast convergence (see
+section Fast Convergence). To collapse is then a trade-off between
+faster forwarding and fast convergence; VPP favours the latter.
+
+
+.. rubric:: Footnotes:
+
+.. [#f16] Directed implies it cannot be back-walked. It is acyclic even in the presence of a recursion loop.
+.. [#f17] Loaded into cache, and hence potentially incurring a d-cache miss.
+.. [#f18] The engaged reader is directed to vnet/vnet/dpo/*
+.. [#f19] i.e. we should not re-use the adjacency structure.
+