aboutsummaryrefslogtreecommitdiffstats
path: root/docs/gettingstarted/developers/binary_api_support.rst
blob: 732ce978daad47de174502a650a69be39181a6b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
.. _binary_api_support:

.. toctree::

Binary API Support
==================

VPP provides a binary API scheme to allow a wide variety of client
codes to program data-plane tables. As of this writing, there are
hundreds of binary APIs.

Messages are defined in \*.api files. Today, there are about 80 api
files, with more arriving as folks add programmable features. The API
file compiler sources reside in src/tools/vppapigen.

From `src/vnet/interface.api
<https://docs.fd.io/vpp/18.11/de/d75/interface_8api.html>`_, here's a
typical request/response message definition:

.. code-block:: console

	autoreply define sw_interface_set_flags
	{
	  u32 client_index;
	  u32 context;
	  u32 sw_if_index;
	  /* 1 = up, 0 = down */
	  u8 admin_up_down;
	};

To a first approximation, the API compiler renders this definition
into
*vpp/build-root/install-vpp_debug-native/vpp/include/vnet/interface.api.h*
as follows:

.. code-block:: C

	/****** Message ID / handler enum ******/

	#ifdef vl_msg_id
	vl_msg_id(VL_API_SW_INTERFACE_SET_FLAGS, vl_api_sw_interface_set_flags_t_handler)
	vl_msg_id(VL_API_SW_INTERFACE_SET_FLAGS_REPLY, vl_api_sw_interface_set_flags_reply_t_handler)
	#endif
	/****** Message names ******/

	#ifdef vl_msg_name
	vl_msg_name(vl_api_sw_interface_set_flags_t, 1)
	vl_msg_name(vl_api_sw_interface_set_flags_reply_t, 1)
	#endif
	/****** Message name, crc list ******/

	#ifdef vl_msg_name_crc_list
	#define foreach_vl_msg_name_crc_interface \
	_(VL_API_SW_INTERFACE_SET_FLAGS, sw_interface_set_flags, f890584a) \
	_(VL_API_SW_INTERFACE_SET_FLAGS_REPLY, sw_interface_set_flags_reply, dfbf3afa) \
	#endif
	/****** Typedefs *****/

	#ifdef vl_typedefs
	#ifndef defined_sw_interface_set_flags
	#define defined_sw_interface_set_flags
	typedef VL_API_PACKED(struct _vl_api_sw_interface_set_flags {
	    u16 _vl_msg_id;
	    u32 client_index;
	    u32 context;
	    u32 sw_if_index;
	    u8 admin_up_down;
	}) vl_api_sw_interface_set_flags_t;
	#endif

	#ifndef defined_sw_interface_set_flags_reply
	#define defined_sw_interface_set_flags_reply
	typedef VL_API_PACKED(struct _vl_api_sw_interface_set_flags_reply {
	    u16 _vl_msg_id;
	    u32 context;
	    i32 retval;
	}) vl_api_sw_interface_set_flags_reply_t;
	#endif
	...
	#endif /* vl_typedefs */

To change the admin state of an interface, a binary api client sends a
`vl_api_sw_interface_set_flags_t
<https://docs.fd.io/vpp/18.11/dc/da3/structvl__api__sw__interface__set__flags__t.html>`_
to VPP, which will respond with a
vl_api_sw_interface_set_flags_reply_t message.

Multiple layers of software, transport types, and shared libraries
implement a variety of features:

* API message allocation, tracing, pretty-printing, and replay.
* Message transport via global shared memory, pairwise/private shared memory, and sockets.
* Barrier synchronization of worker threads across thread-unsafe message handlers.

Correctly-coded message handlers know nothing about the transport used
to deliver messages to/from VPP. It's reasonably straightforward to use
multiple API message transport types simultaneously.

For historical reasons, binary api messages are (putatively) sent in
network byte order. As of this writing, we're seriously considering
whether that choice makes sense.

Message Allocation
__________________

Since binary API messages are always processed in order, we allocate
messages using a ring allocator whenever possible. This scheme is
extremely fast when compared with a traditional memory allocator, and
doesn't cause heap fragmentation. See `src/vlibmemory/memory_shared.c
<https://docs.fd.io/vpp/18.11/dd/d0d/memory__shared_8c.html>`_
`vl_msg_api_alloc_internal()
<https://docs.fd.io/vpp/18.11/dd/d0d/memory__shared_8c.html#ac6b6797850e1a53bc68b206e6b8413fb>`_.

Regardless of transport, binary api messages always follow a `msgbuf_t <https://docs.fd.io/vpp/18.11/d9/d65/structmsgbuf__.html>`_ header:

.. code-block:: C

	/** Message header structure */
	typedef struct msgbuf_
	{
	  svm_queue_t *q; /**< message allocated in this shmem ring  */
	  u32 data_len;                  /**< message length not including header  */
	  u32 gc_mark_timestamp;         /**< message garbage collector mark TS  */
	  u8 data[0];                    /**< actual message begins here  */
	} msgbuf_t;

This structure makes it easy to trace messages without having to
decode them - simply save data_len bytes - and allows
`vl_msg_api_free()
<https://docs.fd.io/vpp/18.11/d6/d1b/api__common_8h.html#aff61e777fe5df789121d8e78134867e6>`_
to rapidly dispose of message buffers:

.. code-block:: C

	void
	vl_msg_api_free (void *a)
	{
	  msgbuf_t *rv;
	  void *oldheap;
	  api_main_t *am = &api_main;

	  rv = (msgbuf_t *) (((u8 *) a) - offsetof (msgbuf_t, data));

	  /*
	   * Here's the beauty of the scheme.  Only one proc/thread has
	   * control of a given message buffer. To free a buffer, we just clear the
	   * queue field, and leave. No locks, no hits, no errors...
	   */
	  if (rv->q)
	    {
	      rv->q = 0;
	      rv->gc_mark_timestamp = 0;
	      <more code...>
	      return;
	    }
	  <more code...>
	}

Message Tracing and Replay
__________________________

It's extremely important that VPP can capture and replay sizeable
binary API traces. System-level issues involving hundreds of thousands
of API transactions can be re-run in a second or less. Partial replay
allows one to binary-search for the point where the wheels fall
off. One can add scaffolding to the data plane, to trigger when
complex conditions obtain.

With binary API trace, print, and replay, system-level bug reports of
the form "after 300,000 API transactions, the VPP data-plane stopped
forwarding traffic, FIX IT!" can be solved offline.

More often than not, one discovers that a control-plane client
misprograms the data plane after a long time or under complex
circumstances. Without direct evidence, "it's a data-plane problem!"

See `src/vlibmemory/memory_vlib::c
<https://docs.fd.io/vpp/18.11/dd/d3e/vpp__get__metrics_8c.html#a7c3855ed3c45b48ff92a7e881bfede73>`_
`vl_msg_api_process_file()
<https://docs.fd.io/vpp/18.11/d0/d5b/vlib__api__cli_8c.html#a60194e3e91c0dc6a75906ea06f4ec113>`_,
and `src/vlibapi/api_shared.c
<https://docs.fd.io/vpp/18.11/d6/dd1/api__shared_8c.html>`_. See also
the debug CLI command "api trace"

API trace replay caveats
________________________

The vpp instance which replays a binary API trace must have the same
message-ID numbering space as the vpp instance which captured the
trace. The replay instance **must** load the same set of plugins as
the capture instance. Otherwise, API messages will be processed by the
**wrong** API message handlers!

Always start vpp with command-line arguments which include an
"api-trace on" stanza, so vpp will start tracing binary API messages
from the beginning:

.. code-block:: console

   api-trace {
     on
   }

Given a binary api trace in /tmp/api_trace, do the following to work
out the set of plugins:

.. code-block:: console

   DBGvpp# api trace custom-dump /tmp/api_trace
   vl_api_trace_plugin_msg_ids: abf_54307ba2 first 846 last 855
   vl_api_trace_plugin_msg_ids: acl_0d7265b0 first 856 last 893
   vl_api_trace_plugin_msg_ids: cdp_8f707b96 first 894 last 895
   vl_api_trace_plugin_msg_ids: flowprobe_f2f0286c first 898 last 901
   <etc>

Here, we see the "abf," "acl," "cdp," and "flowprobe" plugins. Use the
list of plugins to construct a matching "plugins" command-line argument
stanza:

.. code-block:: console

    plugins {
   	## Disable all plugins, selectively enable specific plugins
    	plugin default { disable }
    	plugin abf_plugin.so { enable }
    	plugin acl_plugin.so { enable }
    	plugin cdp_plugin.so { enable }
    	plugin flowprobe_plugin.so { enable }
    }

To begin with, use the same vpp image that captured a trace to replay
it. It's perfectly fair to rebuild the vpp replay instance, to add
scaffolding to facilitate setting gdb breakpoints on complex
conditions or similar.

API trace interface issues
__________________________

Along the same lines, it may be necessary to manufacture [simulated]
physical interfaces so that an API trace will replay correctly. "show
interface" on the trace origin system can help. An API trace
"custom-dump" as shown above may make it obvious how many loopback
interfaces to create. If you see vhost interfaces being created and
then configured, the first such configuration message in the trace
will tell you how many physical interfaces were involved.

.. code-block:: console

  SCRIPT: create_vhost_user_if socket /tmp/foosock server
  SCRIPT: sw_interface_set_flags sw_if_index 3 admin-up

In this case, it's fair to guess that one needs to create two loopback
interfaces to "help" the trace replay correctly.

These issues can be mitigated to a certain extent by replaying the
trace on the system which created it, but in a field debug case that's
not a realistic.

Client connection details
_________________________

Establishing a binary API connection to VPP from a C-language client is easy:

.. code-block:: C

	int
	connect_to_vpe (char *client_name, int client_message_queue_length)
	{
	  vat_main_t *vam = &vat_main;
	  api_main_t *am = &api_main;
	  if (vl_client_connect_to_vlib ("/vpe-api", client_name,
	                                client_message_queue_length) < 0)
	    return -1;
	  /* Memorize vpp's binary API message input queue address */
	  vam->vl_input_queue = am->shmem_hdr->vl_input_queue;
	  /* And our client index */
	  vam->my_client_index = am->my_client_index;
	  return 0;
	}

32 is a typical value for client_message_queue_length. VPP *cannot*
block when it needs to send an API message to a binary API client. The
VPP-side binary API message handlers are very fast. So, when sending
asynchronous messages, make sure to scrape the binary API rx ring with
some enthusiasm!

**Binary API message RX pthread**

Calling `vl_client_connect_to_vlib
<https://docs.fd.io/vpp/18.11/da/d25/memory__client_8h.html#a6654b42c91be33bfb6a4b4bfd2327920>`_
spins up a binary API message RX pthread:

.. code-block:: C

	static void *
	rx_thread_fn (void *arg)
	{
	  svm_queue_t *q;
	  memory_client_main_t *mm = &memory_client_main;
	  api_main_t *am = &api_main;
	  int i;

	  q = am->vl_input_queue;

	  /* So we can make the rx thread terminate cleanly */
	  if (setjmp (mm->rx_thread_jmpbuf) == 0)
	    {
	      mm->rx_thread_jmpbuf_valid = 1;
	      /*
	       * Find an unused slot in the per-cpu-mheaps array,
	       * and grab it for this thread. We need to be able to
	       * push/pop the thread heap without affecting other thread(s).
	       */
	      if (__os_thread_index == 0)
	        {
	          for (i = 0; i < ARRAY_LEN (clib_per_cpu_mheaps); i++)
	            {
	              if (clib_per_cpu_mheaps[i] == 0)
	                {
	                  /* Copy the main thread mheap pointer */
	                  clib_per_cpu_mheaps[i] = clib_per_cpu_mheaps[0];
	                  __os_thread_index = i;
	                  break;
	                }
	            }
	          ASSERT (__os_thread_index > 0);
	        }
	      while (1)
	        vl_msg_api_queue_handler (q);
	    }
	  pthread_exit (0);
	}

To handle the binary API message queue yourself, use
`vl_client_connect_to_vlib_no_rx_pthread
<https://docs.fd.io/vpp/18.11/da/d25/memory__client_8h.html#a11b9577297106c57c0783b96ab190c36>`_.

**Queue non-empty signalling**

vl_msg_api_queue_handler(...) uses mutex/condvar signalling to wake
up, process VPP -> client traffic, then sleep. VPP supplies a condvar
broadcast when the VPP -> client API message queue transitions from
empty to nonempty.

VPP checks its own binary API input queue at a very high rate. VPP
invokes message handlers in "process" context [aka cooperative
multitasking thread context] at a variable rate, depending on
data-plane packet processing requirements.

Client disconnection details
____________________________

To disconnect from VPP, call `vl_client_disconnect_from_vlib
<https://docs.fd.io/vpp/18.11/da/d25/memory__client_8h.html#a82c9ba6e7ead8362ae2175eefcf2fd12>`_. Please
arrange to call this function if the client application terminates
abnormally. VPP makes every effort to hold a decent funeral for dead
clients, but VPP can't guarantee to free leaked memory in the shared
binary API segment.

Sending binary API messages to VPP
__________________________________

The point of the exercise is to send binary API messages to VPP, and
to receive replies from VPP. Many VPP binary APIs comprise a client
request message, and a simple status reply. For example, to set the
admin status of an interface:

.. code-block:: C

	vl_api_sw_interface_set_flags_t *mp;
	mp = vl_msg_api_alloc (sizeof (*mp));
	memset (mp, 0, sizeof (*mp));
	mp->_vl_msg_id = clib_host_to_net_u16 (VL_API_SW_INTERFACE_SET_FLAGS);
	mp->client_index = api_main.my_client_index;
	mp->sw_if_index = clib_host_to_net_u32 (<interface-sw-if-index>);
	vl_msg_api_send (api_main.shmem_hdr->vl_input_queue, (u8 *)mp);

Key points:

* Use `vl_msg_api_alloc <https://docs.fd.io/vpp/18.11/dc/d5a/memory__shared_8h.html#a109ff1e95ebb2c968d43c100c4a1c55a>`_ to allocate message buffers
* Allocated message buffers are not initialized, and must be presumed to contain trash.
* Don't forget to set the _vl_msg_id field!
* As of this writing, binary API message IDs and data are sent in network byte order
* The client-library global data structure `api_main <https://docs.fd.io/vpp/18.11/d6/dd1/api__shared_8c.html#af58e3e46b569573e9622b826b2f47a22>`_ keeps track of sufficient pointers and handles used to communicate with VPP

Receiving binary API messages from VPP
______________________________________

Unless you've made other arrangements (see
`vl_client_connect_to_vlib_no_rx_pthread
<https://docs.fd.io/vpp/18.11/da/d25/memory__client_8h.html#a11b9577297106c57c0783b96ab190c36>`_),
*messages are received on a separate rx pthread*. Synchronization with
the client application main thread is the responsibility of the
application!

Set up message handlers about as follows:

.. code-block:: C

	#define vl_typedefs         /* define message structures */
	#include <vpp/api/vpe_all_api_h.h>
	#undef vl_typedefs
	/* declare message handlers for each api */
	#define vl_endianfun                /* define message structures */
	#include <vpp/api/vpe_all_api_h.h>
	#undef vl_endianfun
	/* instantiate all the print functions we know about */
	#define vl_print(handle, ...)
	#define vl_printfun
	#include <vpp/api/vpe_all_api_h.h>
	#undef vl_printfun
	/* Define a list of all message that the client handles */
	#define foreach_vpe_api_reply_msg                            \
	   _(SW_INTERFACE_SET_FLAGS_REPLY, sw_interface_set_flags_reply)
	   static clib_error_t *
	   my_api_hookup (vlib_main_t * vm)
	   {
	     api_main_t *am = &api_main;
	   #define _(N,n)                                                  \
	       vl_msg_api_set_handlers(VL_API_##N, #n,                     \
	                              vl_api_##n##_t_handler,              \
	                              vl_noop_handler,                     \
	                              vl_api_##n##_t_endian,               \
	                              vl_api_##n##_t_print,                \
	                              sizeof(vl_api_##n##_t), 1);
	     foreach_vpe_api_msg;
	   #undef _
	     return 0;
	    }

The key API used to establish message handlers is
`vl_msg_api_set_handlers
<https://docs.fd.io/vpp/18.11/d6/dd1/api__shared_8c.html#aa8a8e1f3876ec1a02f283c1862ecdb7a>`_
, which sets values in multiple parallel vectors in the `api_main_t
<https://docs.fd.io/vpp/18.11/dd/db2/structapi__main__t.html>`_
structure. As of this writing: not all vector element values can be
set through the API. You'll see sporadic API message registrations
followed by minor adjustments of this form:

.. code-block:: C

	/*
	 * Thread-safe API messages
	 */
	am->is_mp_safe[VL_API_IP_ADD_DEL_ROUTE] = 1;
	am->is_mp_safe[VL_API_GET_NODE_GRAPH] = 1;

API message numbering in plugins
--------------------------------

Binary API message numbering in plugins relies on vpp to issue a block
of message-ID's for the plugin to use:

.. code-block:: C

        static clib_error_t *
        my_init (vlib_main_t * vm)
        {
          my_main_t *mm = &my_main;

          name = format (0, "myplugin_%08x%c", api_version, 0);

          /* Ask for a correctly-sized block of API message decode slots */
          mm->msg_id_base = vl_msg_api_get_msg_ids
            ((char *) name, VL_MSG_FIRST_AVAILABLE);

          }

Control-plane codes use the vl_client_get_first_plugin_msg_id (...) api
to recover the message ID block base:

.. code-block:: C

          /* Ask the vpp engine for the first assigned message-id */
          name = format (0, "myplugin_%08x%c", api_version, 0);
          sm->msg_id_base = vl_client_get_first_plugin_msg_id ((char *) name);

It's a fairly common error to forget to add msg_id_base when
registering message handlers, or when sending messages. Using macros
from .../src/vlibapi/api_helper_macros.h can automate the process, but
remember to #define REPLY_MSG_ID_BASE before #including the file:

.. code-block:: C

          #define REPLY_MSG_ID_BASE mm->msg_id_base
          #include <vlibapi/api_helper_macros.h>