aboutsummaryrefslogtreecommitdiffstats
path: root/src/plugins/crypto_native/aes_gcm.c
blob: 3eb7ae84e19a0a77223d40b50071878a3b17ab62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
 *------------------------------------------------------------------
 * Copyright (c) 2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *------------------------------------------------------------------
 */

#include <vlib/vlib.h>
#include <vnet/plugin/plugin.h>
#include <vnet/crypto/crypto.h>
#include <x86intrin.h>
#include <crypto_native/crypto_native.h>
#include <crypto_native/aes.h>
#include <crypto_native/ghash.h>

#if __GNUC__ > 4  && !__clang__ && CLIB_DEBUG == 0
#pragma GCC optimize ("O3")
#endif

typedef struct
{
  /* pre-calculated hash key values */
  const __m128i Hi[8];
  /* extracted AES key */
  const __m128i Ke[15];
} aes_gcm_key_data_t;

static const __m128i last_byte_one = { 0, 1ULL << 56 };
static const __m128i zero = { 0, 0 };

static const u8x16 bswap_mask = {
  15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
};

static const u8x16 byte_mask_scale = {
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};

static_always_inline __m128i
aesni_gcm_bswap (__m128i x)
{
  return _mm_shuffle_epi8 (x, (__m128i) bswap_mask);
}

static_always_inline __m128i
aesni_gcm_byte_mask (__m128i x, u8 n_bytes)
{
  u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);

  return _mm_blendv_epi8 (zero, x, (__m128i) mask);
}

static_always_inline __m128i
aesni_gcm_load_partial (__m128i * p, int n_bytes)
{
  ASSERT (n_bytes <= 16);
#ifdef __AVX512F__
  return _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p);
#else
  return aesni_gcm_byte_mask (CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, p),
			      n_bytes);
#endif
}

static_always_inline void
aesni_gcm_store_partial (void *p, __m128i r, int n_bytes)
{
#ifdef __AVX512F__
  _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, r);
#else
  u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
  _mm_maskmoveu_si128 (r, (__m128i) mask, p);
#endif
}

static_always_inline void
aesni_gcm_load (__m128i * d, __m128i * inv, int n, int n_bytes)
{
  for (int i = 0; i < n - 1; i++)
    d[i] = _mm_loadu_si128 (inv + i);
  d[n - 1] = n_bytes ? aesni_gcm_load_partial (inv + n - 1, n_bytes) :
    _mm_loadu_si128 (inv + n - 1);
}

static_always_inline void
aesni_gcm_store (__m128i * d, __m128i * outv, int n, int n_bytes)
{
  for (int i = 0; i < n - 1; i++)
    _mm_storeu_si128 (outv + i, d[i]);
  if (n_bytes & 0xf)
    aesni_gcm_store_partial (outv + n - 1, d[n - 1], n_bytes);
  else
    _mm_storeu_si128 (outv + n - 1, d[n - 1]);
}

static_always_inline void
aesni_gcm_enc_first_round (__m128i * r, __m128i * Y, u32 * ctr, __m128i k,
			   int n_blocks)
{
  u32 i;

  if (PREDICT_TRUE ((u8) ctr[0] < (256 - n_blocks)))
    {
      for (i = 0; i < n_blocks; i++)
	{
	  Y[0] = _mm_add_epi32 (Y[0], last_byte_one);
	  r[i] = k ^ Y[0];
	}
      ctr[0] += n_blocks;
    }
  else
    {
      for (i = 0; i < n_blocks; i++)
	{
	  Y[0] = _mm_insert_epi32 (Y[0], clib_host_to_net_u32 (++ctr[0]), 3);
	  r[i] = k ^ Y[0];
	}
    }
}

static_always_inline void
aesni_gcm_enc_round (__m128i * r, __m128i k, int n_blocks)
{
  for (int i = 0; i < n_blocks; i++)
    r[i] = _mm_aesenc_si128 (r[i], k);
}

static_always_inline void
aesni_gcm_enc_last_round (__m128i * r, __m128i * d, const __m128i * k,
			  int rounds, int n_blocks)
{

  /* additional ronuds for AES-192 and AES-256 */
  for (int i = 10; i < rounds; i++)
    aesni_gcm_enc_round (r, k[i], n_blocks);

  for (int i = 0; i < n_blocks; i++)
    d[i] ^= _mm_aesenclast_si128 (r[i], k[rounds]);
}

static_always_inline __m128i
aesni_gcm_ghash_blocks (__m128i T, aes_gcm_key_data_t * kd,
			const __m128i * in, int n_blocks)
{
  ghash_data_t _gd, *gd = &_gd;
  const __m128i *Hi = kd->Hi + n_blocks - 1;
  ghash_mul_first (gd, aesni_gcm_bswap (_mm_loadu_si128 (in)) ^ T, Hi[0]);
  for (int i = 1; i < n_blocks; i++)
    ghash_mul_next (gd, aesni_gcm_bswap (_mm_loadu_si128 (in + i)), Hi[-i]);
  ghash_reduce (gd);
  ghash_reduce2 (gd);
  return ghash_final (gd);
}

static_always_inline __m128i
aesni_gcm_ghash (__m128i T, aes_gcm_key_data_t * kd, const __m128i * in,
		 u32 n_left)
{

  while (n_left >= 128)
    {
      T = aesni_gcm_ghash_blocks (T, kd, in, 8);
      n_left -= 128;
      in += 8;
    }

  if (n_left >= 64)
    {
      T = aesni_gcm_ghash_blocks (T, kd, in, 4);
      n_left -= 64;
      in += 4;
    }

  if (n_left >= 32)
    {
      T = aesni_gcm_ghash_blocks (T, kd, in, 2);
      n_left -= 32;
      in += 2;
    }

  if (n_left >= 16)
    {
      T = aesni_gcm_ghash_blocks (T, kd, in, 1);
      n_left -= 16;
      in += 1;
    }

  if (n_left)
    {
      __m128i r = aesni_gcm_load_partial ((__m128i *) in, n_left);
      T = ghash_mul (aesni_gcm_bswap (r) ^ T, kd->Hi[0]);
    }
  return T;
}

static_always_inline __m128i
aesni_gcm_calc (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
		__m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv,
		int rounds, int n, int last_block_bytes, int with_ghash,
		int is_encrypt)
{
  __m128i r[n];
  ghash_data_t _gd = { }, *gd = &_gd;
  const __m128i *k = kd->Ke;
  int hidx = is_encrypt ? 4 : n, didx = 0;

  _mm_prefetch (inv + 4, _MM_HINT_T0);

  /* AES rounds 0 and 1 */
  aesni_gcm_enc_first_round (r, Y, ctr, k[0], n);
  aesni_gcm_enc_round (r, k[1], n);

  /* load data - decrypt round */
  if (is_encrypt == 0)
    aesni_gcm_load (d, inv, n, last_block_bytes);

  /* GHASH multiply block 1 */
  if (with_ghash)
    ghash_mul_first (gd, aesni_gcm_bswap (d[didx++]) ^ T, kd->Hi[--hidx]);

  /* AES rounds 2 and 3 */
  aesni_gcm_enc_round (r, k[2], n);
  aesni_gcm_enc_round (r, k[3], n);

  /* GHASH multiply block 2 */
  if (with_ghash && hidx)
    ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);

  /* AES rounds 4 and 5 */
  aesni_gcm_enc_round (r, k[4], n);
  aesni_gcm_enc_round (r, k[5], n);

  /* GHASH multiply block 3 */
  if (with_ghash && hidx)
    ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);

  /* AES rounds 6 and 7 */
  aesni_gcm_enc_round (r, k[6], n);
  aesni_gcm_enc_round (r, k[7], n);

  /* GHASH multiply block 4 */
  if (with_ghash && hidx)
    ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);

  /* AES rounds 8 and 9 */
  aesni_gcm_enc_round (r, k[8], n);
  aesni_gcm_enc_round (r, k[9], n);

  /* GHASH reduce 1st step */
  if (with_ghash)
    ghash_reduce (gd);

  /* load data - encrypt round */
  if (is_encrypt)
    aesni_gcm_load (d, inv, n, last_block_bytes);

  /* GHASH reduce 2nd step */
  if (with_ghash)
    ghash_reduce2 (gd);

  /* AES last round(s) */
  aesni_gcm_enc_last_round (r, d, k, rounds, n);

  /* store data */
  aesni_gcm_store (d, outv, n, last_block_bytes);

  /* GHASH final step */
  if (with_ghash)
    T = ghash_final (gd);

  return T;
}

static_always_inline __m128i
aesni_gcm_calc_double (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
		       __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv,
		       int rounds, int is_encrypt)
{
  __m128i r[4];
  ghash_data_t _gd, *gd = &_gd;
  const __m128i *k = kd->Ke;

  /* AES rounds 0 and 1 */
  aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4);
  aesni_gcm_enc_round (r, k[1], 4);

  /* load 4 blocks of data - decrypt round */
  if (is_encrypt == 0)
    aesni_gcm_load (d, inv, 4, 0);

  /* GHASH multiply block 0 */
  ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[7]);

  /* AES rounds 2 and 3 */
  aesni_gcm_enc_round (r, k[2], 4);
  aesni_gcm_enc_round (r, k[3], 4);

  /* GHASH multiply block 1 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[6]);

  /* AES rounds 4 and 5 */
  aesni_gcm_enc_round (r, k[4], 4);
  aesni_gcm_enc_round (r, k[5], 4);

  /* GHASH multiply block 2 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[5]);

  /* AES rounds 6 and 7 */
  aesni_gcm_enc_round (r, k[6], 4);
  aesni_gcm_enc_round (r, k[7], 4);

  /* GHASH multiply block 3 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[4]);

  /* AES rounds 8 and 9 */
  aesni_gcm_enc_round (r, k[8], 4);
  aesni_gcm_enc_round (r, k[9], 4);

  /* load 4 blocks of data - encrypt round */
  if (is_encrypt)
    aesni_gcm_load (d, inv, 4, 0);

  /* AES last round(s) */
  aesni_gcm_enc_last_round (r, d, k, rounds, 4);

  /* store 4 blocks of data */
  aesni_gcm_store (d, outv, 4, 0);

  /* load next 4 blocks of data data - decrypt round */
  if (is_encrypt == 0)
    aesni_gcm_load (d, inv + 4, 4, 0);

  /* GHASH multiply block 4 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[0]), kd->Hi[3]);

  /* AES rounds 0, 1 and 2 */
  aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4);
  aesni_gcm_enc_round (r, k[1], 4);
  aesni_gcm_enc_round (r, k[2], 4);

  /* GHASH multiply block 5 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[2]);

  /* AES rounds 3 and 4 */
  aesni_gcm_enc_round (r, k[3], 4);
  aesni_gcm_enc_round (r, k[4], 4);

  /* GHASH multiply block 6 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[1]);

  /* AES rounds 5 and 6 */
  aesni_gcm_enc_round (r, k[5], 4);
  aesni_gcm_enc_round (r, k[6], 4);

  /* GHASH multiply block 7 */
  ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[0]);

  /* AES rounds 7 and 8 */
  aesni_gcm_enc_round (r, k[7], 4);
  aesni_gcm_enc_round (r, k[8], 4);

  /* GHASH reduce 1st step */
  ghash_reduce (gd);

  /* AES round 9 */
  aesni_gcm_enc_round (r, k[9], 4);

  /* load data - encrypt round */
  if (is_encrypt)
    aesni_gcm_load (d, inv + 4, 4, 0);

  /* GHASH reduce 2nd step */
  ghash_reduce2 (gd);

  /* AES last round(s) */
  aesni_gcm_enc_last_round (r, d, k, rounds, 4);

  /* store data */
  aesni_gcm_store (d, outv + 4, 4, 0);

  /* GHASH final step */
  return ghash_final (gd);
}

static_always_inline __m128i
aesni_gcm_ghash_last (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
		      int n_blocks, int n_bytes)
{
  ghash_data_t _gd, *gd = &_gd;

  if (n_bytes)
    d[n_blocks - 1] = aesni_gcm_byte_mask (d[n_blocks - 1], n_bytes);

  ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[n_blocks - 1]);
  if (n_blocks > 1)
    ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[n_blocks - 2]);
  if (n_blocks > 2)
    ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[n_blocks - 3]);
  if (n_blocks > 3)
    ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[n_blocks - 4]);
  ghash_reduce (gd);
  ghash_reduce2 (gd);
  return ghash_final (gd);
}


static_always_inline __m128i
aesni_gcm_enc (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in,
	       const u8 * out, u32 n_left, int rounds)
{
  __m128i *inv = (__m128i *) in, *outv = (__m128i *) out;
  __m128i d[4];
  u32 ctr = 1;

  if (n_left == 0)
    return T;

  if (n_left < 64)
    {
      if (n_left > 48)
	{
	  n_left &= 0x0f;
	  aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left,
			  /* with_ghash */ 0, /* is_encrypt */ 1);
	  return aesni_gcm_ghash_last (T, kd, d, 4, n_left);
	}
      else if (n_left > 32)
	{
	  n_left &= 0x0f;
	  aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left,
			  /* with_ghash */ 0, /* is_encrypt */ 1);
	  return aesni_gcm_ghash_last (T, kd, d, 3, n_left);
	}
      else if (n_left > 16)
	{
	  n_left &= 0x0f;
	  aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left,
			  /* with_ghash */ 0, /* is_encrypt */ 1);
	  return aesni_gcm_ghash_last (T, kd, d, 2, n_left);
	}
      else
	{
	  n_left &= 0x0f;
	  aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left,
			  /* with_ghash */ 0, /* is_encrypt */ 1);
	  return aesni_gcm_ghash_last (T, kd, d, 1, n_left);
	}
    }

  aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0,
		  /* with_ghash */ 0, /* is_encrypt */ 1);

  /* next */
  n_left -= 64;
  outv += 4;
  inv += 4;

  while (n_left >= 128)
    {
      T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds,
				 /* is_encrypt */ 1);

      /* next */
      n_left -= 128;
      outv += 8;
      inv += 8;
    }

  if (n_left >= 64)
    {
      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0,
			  /* with_ghash */ 1, /* is_encrypt */ 1);

      /* next */
      n_left -= 64;
      outv += 4;
      inv += 4;
    }

  if (n_left == 0)
    return aesni_gcm_ghash_last (T, kd, d, 4, 0);

  if (n_left > 48)
    {
      n_left &= 0x0f;
      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left,
			  /* with_ghash */ 1, /* is_encrypt */ 1);
      return aesni_gcm_ghash_last (T, kd, d, 4, n_left);
    }

  if (n_left > 32)
    {
      n_left &= 0x0f;
      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left,
			  /* with_ghash */ 1, /* is_encrypt */ 1);
      return aesni_gcm_ghash_last (T, kd, d, 3, n_left);
    }

  if (n_left > 16)
    {
      n_left &= 0x0f;
      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left,
			  /* with_ghash */ 1, /* is_encrypt */ 1);
      return aesni_gcm_ghash_last (T, kd, d, 2, n_left);
    }

  n_left &= 0x0f;
  T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left,
		      /* with_ghash */ 1, /* is_encrypt */ 1);
  return aesni_gcm_ghash_last (T, kd, d, 1, n_left);
}

static_always_inline __m128i
aesni_gcm_dec (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in,
	       const u8 * out, u32 n_left, int rounds)
{
  __m128i *inv = (__m128i *) in, *outv = (__m128i *) out;
  __m128i d[8];
  u32 ctr = 1;

  while (n_left >= 128)
    {
      T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds,
				 /* is_encrypt */ 0);

      /* next */
      n_left -= 128;
      outv += 8;
      inv += 8;
    }

  if (n_left >= 64)
    {
      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, 1, 0);

      /* next */
      n_left -= 64;
      outv += 4;
      inv += 4;
    }

  if (n_left == 0)
    return T;

  if (n_left > 48)
    return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4,
			   n_left - 48,
			   /* with_ghash */ 1, /* is_encrypt */ 0);

  if (n_left > 32)
    return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3,
			   n_left - 32,
			   /* with_ghash */ 1, /* is_encrypt */ 0);

  if (n_left > 16)
    return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2,
			   n_left - 16,
			   /* with_ghash */ 1, /* is_encrypt */ 0);

  return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left,
			 /* with_ghash */ 1, /* is_encrypt */ 0);
}

static_always_inline int
aes_gcm (const u8 * in, u8 * out, const u8 * addt, const u8 * iv, u8 * tag,
	 u32 data_bytes, u32 aad_bytes, u8 tag_len, aes_gcm_key_data_t * kd,
	 int aes_rounds, int is_encrypt)
{
  int i;
  __m128i r, Y0, T = { };
  ghash_data_t _gd, *gd = &_gd;

  _mm_prefetch (iv, _MM_HINT_T0);
  _mm_prefetch (in, _MM_HINT_T0);
  _mm_prefetch (in + CLIB_CACHE_LINE_BYTES, _MM_HINT_T0);

  /* calculate ghash for AAD - optimized for ipsec common cases */
  if (aad_bytes == 8)
    T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 8);
  else if (aad_bytes == 12)
    T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 12);
  else
    T = aesni_gcm_ghash (T, kd, (__m128i *) addt, aad_bytes);

  /* initalize counter */
  Y0 = CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, (__m128i *) iv);
  Y0 = _mm_insert_epi32 (Y0, clib_host_to_net_u32 (1), 3);

  /* ghash and encrypt/edcrypt  */
  if (is_encrypt)
    T = aesni_gcm_enc (T, kd, Y0, in, out, data_bytes, aes_rounds);
  else
    T = aesni_gcm_dec (T, kd, Y0, in, out, data_bytes, aes_rounds);

  _mm_prefetch (tag, _MM_HINT_T0);

  /* Finalize ghash */
  r[0] = data_bytes;
  r[1] = aad_bytes;

  /* bytes to bits */
  r <<= 3;

  /* interleaved computation of final ghash and E(Y0, k) */
  ghash_mul_first (gd, r ^ T, kd->Hi[0]);
  r = kd->Ke[0] ^ Y0;
  for (i = 1; i < 5; i += 1)
    r = _mm_aesenc_si128 (r, kd->Ke[i]);
  ghash_reduce (gd);
  ghash_reduce2 (gd);
  for (; i < 9; i += 1)
    r = _mm_aesenc_si128 (r, kd->Ke[i]);
  T = ghash_final (gd);
  for (; i < aes_rounds; i += 1)
    r = _mm_aesenc_si128 (r, kd->Ke[i]);
  r = _mm_aesenclast_si128 (r, kd->Ke[aes_rounds]);
  T = aesni_gcm_bswap (T) ^ r;

  /* tag_len 16 -> 0 */
  tag_len &= 0xf;

  if (is_encrypt)
    {
      /* store tag */
      if (tag_len)
	aesni_gcm_store_partial ((__m128i *) tag, T, (1 << tag_len) - 1);
      else
	_mm_storeu_si128 ((__m128i *) tag, T);
    }
  else
    {
      /* check tag */
      u16 tag_mask = tag_len ? (1 << tag_len) - 1 : 0xffff;
      r = _mm_loadu_si128 ((__m128i *) tag);
      if (_mm_movemask_epi8 (r == T) != tag_mask)
	return 0;
    }
  return 1;
}

static_always_inline u32
aesni_ops_enc_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[],
		       u32 n_ops, aes_key_size_t ks)
{
  crypto_native_main_t *cm = &crypto_native_main;
  vnet_crypto_op_t *op = ops[0];
  aes_gcm_key_data_t *kd;
  u32 n_left = n_ops;


next:
  kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index];
  aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, op->aad_len,
	   op->tag_len, kd, AES_KEY_ROUNDS (ks), /* is_encrypt */ 1);
  op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;

  if (--n_left)
    {
      op += 1;
      goto next;
    }

  return n_ops;
}

static_always_inline u32
aesni_ops_dec_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[],
		       u32 n_ops, aes_key_size_t ks)
{
  crypto_native_main_t *cm = &crypto_native_main;
  vnet_crypto_op_t *op = ops[0];
  aes_gcm_key_data_t *kd;
  u32 n_left = n_ops;
  int rv;

next:
  kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index];
  rv = aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len,
		op->aad_len, op->tag_len, kd, AES_KEY_ROUNDS (ks),
		/* is_encrypt */ 0);

  if (rv)
    {
      op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
    }
  else
    {
      op->status = VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC;
      n_ops--;
    }

  if (--n_left)
    {
      op += 1;
      goto next;
    }

  return n_ops;
}

static_always_inline void *
aesni_gcm_key_exp (vnet_crypto_key_t * key, aes_key_size_t ks)
{
  aes_gcm_key_data_t *kd;
  __m128i H;
  int i;

  kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES);

  /* expand AES key */
  aes_key_expand ((__m128i *) kd->Ke, key->data, ks);

  /* pre-calculate H */
  H = kd->Ke[0];
  for (i = 1; i < AES_KEY_ROUNDS (ks); i += 1)
    H = _mm_aesenc_si128 (H, kd->Ke[i]);
  H = _mm_aesenclast_si128 (H, kd->Ke[i]);
  H = aesni_gcm_bswap (H);
  ghash_precompute (H, (__m128i *) kd->Hi, 8);
  return kd;
}

#define foreach_aesni_gcm_handler_type _(128) _(192) _(256)

#define _(x) \
static u32 aesni_ops_dec_aes_gcm_##x                                         \
(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops)                      \
{ return aesni_ops_dec_aes_gcm (vm, ops, n_ops, AES_KEY_##x); }              \
static u32 aesni_ops_enc_aes_gcm_##x                                         \
(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops)                      \
{ return aesni_ops_enc_aes_gcm (vm, ops, n_ops, AES_KEY_##x); }              \
static void * aesni_gcm_key_exp_##x (vnet_crypto_key_t *key)                 \
{ return aesni_gcm_key_exp (key, AES_KEY_##x); }

foreach_aesni_gcm_handler_type;
#undef _

clib_error_t *
#ifdef __VAES__
crypto_native_aes_gcm_init_vaes (vlib_main_t * vm)
#elif __AVX512F__
crypto_native_aes_gcm_init_avx512 (vlib_main_t * vm)
#elif __AVX2__
crypto_native_aes_gcm_init_avx2 (vlib_main_t * vm)
#else
crypto_native_aes_gcm_init_sse42 (vlib_main_t * vm)
#endif
{
  crypto_native_main_t *cm = &crypto_native_main;

#define _(x) \
  vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
				    VNET_CRYPTO_OP_AES_##x##_GCM_ENC, \
				    aesni_ops_enc_aes_gcm_##x); \
  vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
				    VNET_CRYPTO_OP_AES_##x##_GCM_DEC, \
				    aesni_ops_dec_aes_gcm_##x); \
  cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_GCM] = aesni_gcm_key_exp_##x;
  foreach_aesni_gcm_handler_type;
#undef _
  return 0;
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */