aboutsummaryrefslogtreecommitdiffstats
path: root/src/plugins/quic/certs.c
blob: 8b2f05ebabe53c403a8741ef77b234f33191e459 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
 * Copyright (c) 2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <openssl/pem.h>

#include <vppinfra/error.h>

#include <quic/certs.h>


int
ptls_compare_separator_line (const char *line, const char *begin_or_end,
                             const char *label)
{
  int ret = strncmp (line, "-----", 5);
  size_t text_index = 5;

  if (ret == 0)
    {
      size_t begin_or_end_length = strlen (begin_or_end);
      ret = strncmp (line + text_index, begin_or_end, begin_or_end_length);
      text_index += begin_or_end_length;
    }

  if (ret == 0)
    {
      ret = line[text_index] - ' ';
      text_index++;
    }

  if (ret == 0)
    {
      size_t label_length = strlen (label);
      ret = strncmp (line + text_index, label, label_length);
      text_index += label_length;
    }

  if (ret == 0)
    {
      ret = strncmp (line + text_index, "-----", 5);
    }

  return ret;
}

int
ptls_get_bio_pem_object (BIO * bio, const char *label, ptls_buffer_t * buf)
{
  int ret = PTLS_ERROR_PEM_LABEL_NOT_FOUND;
  char line[256];
  ptls_base64_decode_state_t state;

  /* Get the label on a line by itself */
  while (BIO_gets (bio, line, 256))
    {
      if (ptls_compare_separator_line (line, "BEGIN", label) == 0)
        {
          ret = 0;
          ptls_base64_decode_init (&state);
          break;
        }
    }
  /* Get the data in the buffer */
  while (ret == 0 && BIO_gets (bio, line, 256))
    {
      if (ptls_compare_separator_line (line, "END", label) == 0)
        {
          if (state.status == PTLS_BASE64_DECODE_DONE
              || (state.status == PTLS_BASE64_DECODE_IN_PROGRESS
                  && state.nbc == 0))
            {
              ret = 0;
            }
          else
            {
              ret = PTLS_ERROR_INCORRECT_BASE64;
            }
          break;
        }
      else
        {
          ret = ptls_base64_decode (line, &state, buf);
        }
    }

  return ret;
}

int
ptls_load_bio_pem_objects (BIO * bio, const char *label, ptls_iovec_t * list,
                           size_t list_max, size_t * nb_objects)
{
  int ret = 0;
  size_t count = 0;

  *nb_objects = 0;

  if (ret == 0)
    {
      while (count < list_max)
        {
          ptls_buffer_t buf;

          ptls_buffer_init (&buf, "", 0);

          ret = ptls_get_bio_pem_object (bio, label, &buf);

          if (ret == 0)
            {
              if (buf.off > 0 && buf.is_allocated)
                {
                  list[count].base = buf.base;
                  list[count].len = buf.off;
                  count++;
                }
              else
                {
                  ptls_buffer_dispose (&buf);
                }
            }
          else
            {
              ptls_buffer_dispose (&buf);
              break;
            }
        }
    }

  if (ret == PTLS_ERROR_PEM_LABEL_NOT_FOUND && count > 0)
    {
      ret = 0;
    }

  *nb_objects = count;

  return ret;
}

#define PTLS_MAX_CERTS_IN_CONTEXT 16

int
ptls_load_bio_certificates (ptls_context_t * ctx, BIO * bio)
{
  int ret = 0;

  ctx->certificates.list =
    (ptls_iovec_t *) malloc (PTLS_MAX_CERTS_IN_CONTEXT *
                             sizeof (ptls_iovec_t));

  if (ctx->certificates.list == NULL)
    {
      ret = PTLS_ERROR_NO_MEMORY;
    }
  else
    {
      ret =
        ptls_load_bio_pem_objects (bio, "CERTIFICATE", ctx->certificates.list,
                                   PTLS_MAX_CERTS_IN_CONTEXT,
                                   &ctx->certificates.count);
    }

  return ret;
}

int
load_bio_certificate_chain (ptls_context_t * ctx, const char *cert_data)
{
  BIO *cert_bio;
  cert_bio = BIO_new_mem_buf (cert_data, -1);
  if (ptls_load_bio_certificates (ctx, cert_bio) != 0)
    {
      BIO_free (cert_bio);
      return -1;
    }
  BIO_free (cert_bio);
  return 0;
}

int
load_bio_private_key (ptls_context_t * ctx, const char *pk_data)
{
  static ptls_openssl_sign_certificate_t sc;
  EVP_PKEY *pkey;
  BIO *key_bio;

  key_bio = BIO_new_mem_buf (pk_data, -1);
  pkey = PEM_read_bio_PrivateKey (key_bio, NULL, NULL, NULL);
  BIO_free (key_bio);

  if (pkey == NULL)
    return -1;

  ptls_openssl_init_sign_certificate (&sc, pkey);
  EVP_PKEY_free (pkey);

  ctx->sign_certificate = &sc.super;
  return 0;
}
\ _ (2, USE_ANTI_REPLAY, "anti-replay") \ _ (4, IS_TUNNEL, "tunnel") \ _ (8, IS_TUNNEL_V6, "tunnel-v6") \ _ (16, UDP_ENCAP, "udp-encap") \ _ (32, IS_PROTECT, "Protect") \ _ (64, IS_INBOUND, "inbound") \ _ (128, IS_AEAD, "aead") \ _ (256, IS_CTR, "ctr") \ _ (512, IS_ASYNC, "async") typedef enum ipsec_sad_flags_t_ { #define _(v, f, s) IPSEC_SA_FLAG_##f = v, foreach_ipsec_sa_flags #undef _ } __clib_packed ipsec_sa_flags_t; STATIC_ASSERT (sizeof (ipsec_sa_flags_t) == 2, "IPSEC SA flags != 2 byte"); typedef struct { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); /* flags */ ipsec_sa_flags_t flags; u8 crypto_iv_size; u8 esp_block_align; u8 integ_icv_size; u8 __pad1[3]; u32 thread_index; u32 spi; u32 seq; u32 seq_hi; u64 replay_window; u64 ctr_iv_counter; dpo_id_t dpo; vnet_crypto_key_index_t crypto_key_index; vnet_crypto_key_index_t integ_key_index; /* Union data shared by sync and async ops, updated when mode is * changed. */ union { struct { vnet_crypto_op_id_t crypto_enc_op_id:16; vnet_crypto_op_id_t crypto_dec_op_id:16; vnet_crypto_op_id_t integ_op_id:16; }; struct { vnet_crypto_async_op_id_t crypto_async_enc_op_id:16; vnet_crypto_async_op_id_t crypto_async_dec_op_id:16; vnet_crypto_key_index_t linked_key_index; }; u64 crypto_op_data; }; CLIB_CACHE_LINE_ALIGN_MARK (cacheline1); union { ip4_header_t ip4_hdr; ip6_header_t ip6_hdr; }; udp_header_t udp_hdr; /* Salt used in CTR modes (incl. GCM) - stored in network byte order */ u32 salt; ipsec_protocol_t protocol; tunnel_encap_decap_flags_t tunnel_flags; u8 __pad[2]; /* data accessed by dataplane code should be above this comment */ CLIB_CACHE_LINE_ALIGN_MARK (cacheline2); /* Elements with u64 size multiples */ union { struct { vnet_crypto_op_id_t crypto_enc_op_id:16; vnet_crypto_op_id_t crypto_dec_op_id:16; vnet_crypto_op_id_t integ_op_id:16; }; u64 data; } sync_op_data; union { struct { vnet_crypto_async_op_id_t crypto_async_enc_op_id:16; vnet_crypto_async_op_id_t crypto_async_dec_op_id:16; vnet_crypto_key_index_t linked_key_index; }; u64 data; } async_op_data; tunnel_t tunnel; fib_node_t node; /* elements with u32 size */ u32 id; u32 stat_index; vnet_crypto_alg_t integ_calg; vnet_crypto_alg_t crypto_calg; /* else u8 packed */ ipsec_crypto_alg_t crypto_alg; ipsec_integ_alg_t integ_alg; ipsec_key_t integ_key; ipsec_key_t crypto_key; } ipsec_sa_t; STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline1, CLIB_CACHE_LINE_BYTES); STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline2, 2 * CLIB_CACHE_LINE_BYTES); /** * Pool of IPSec SAs */ extern ipsec_sa_t *ipsec_sa_pool; /* * Ensure that the IPsec data does not overlap with the IP data in * the buffer meta data */ STATIC_ASSERT (STRUCT_OFFSET_OF (vnet_buffer_opaque_t, ipsec.sad_index) == STRUCT_OFFSET_OF (vnet_buffer_opaque_t, ip.save_protocol), "IPSec data is overlapping with IP data"); #define _(a,v,s) \ always_inline int \ ipsec_sa_is_set_##v (const ipsec_sa_t *sa) { \ return (sa->flags & IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ #define _(a,v,s) \ always_inline int \ ipsec_sa_set_##v (ipsec_sa_t *sa) { \ return (sa->flags |= IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ #define _(a,v,s) \ always_inline int \ ipsec_sa_unset_##v (ipsec_sa_t *sa) { \ return (sa->flags &= ~IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ /** * @brief * SA packet & bytes counters */ extern vlib_combined_counter_main_t ipsec_sa_counters; extern vlib_simple_counter_main_t ipsec_sa_lost_counters; extern void ipsec_mk_key (ipsec_key_t * key, const u8 * data, u8 len); extern int ipsec_sa_add_and_lock (u32 id, u32 spi, ipsec_protocol_t proto, ipsec_crypto_alg_t crypto_alg, const ipsec_key_t *ck, ipsec_integ_alg_t integ_alg, const ipsec_key_t *ik, ipsec_sa_flags_t flags, u32 salt, u16 src_port, u16 dst_port, const tunnel_t *tun, u32 *sa_out_index); extern index_t ipsec_sa_find_and_lock (u32 id); extern int ipsec_sa_unlock_id (u32 id); extern void ipsec_sa_unlock (index_t sai); extern void ipsec_sa_lock (index_t sai); extern void ipsec_sa_clear (index_t sai); extern void ipsec_sa_set_crypto_alg (ipsec_sa_t * sa, ipsec_crypto_alg_t crypto_alg); extern void ipsec_sa_set_integ_alg (ipsec_sa_t * sa, ipsec_integ_alg_t integ_alg); typedef walk_rc_t (*ipsec_sa_walk_cb_t) (ipsec_sa_t * sa, void *ctx); extern void ipsec_sa_walk (ipsec_sa_walk_cb_t cd, void *ctx); extern u8 *format_ipsec_replay_window (u8 *s, va_list *args); extern u8 *format_ipsec_crypto_alg (u8 * s, va_list * args); extern u8 *format_ipsec_integ_alg (u8 * s, va_list * args); extern u8 *format_ipsec_sa (u8 * s, va_list * args); extern u8 *format_ipsec_key (u8 * s, va_list * args); extern uword unformat_ipsec_crypto_alg (unformat_input_t * input, va_list * args); extern uword unformat_ipsec_integ_alg (unformat_input_t * input, va_list * args); extern uword unformat_ipsec_key (unformat_input_t * input, va_list * args); #define IPSEC_UDP_PORT_NONE ((u16)~0) /* * Anti Replay definitions */ #define IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (64) #define IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE-1) /* * sequence number less than the lower bound are outside of the window * From RFC4303 Appendix A: * Bl = Tl - W + 1 */ #define IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND(_tl) (_tl - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE + 1) always_inline int ipsec_sa_anti_replay_check (const ipsec_sa_t *sa, u32 seq) { if (ipsec_sa_is_set_USE_ANTI_REPLAY (sa) && sa->replay_window & (1ULL << (sa->seq - seq))) return 1; else return 0; } /* * Anti replay check. * inputs need to be in host byte order. * * The function runs in two contexts. pre and post decrypt. * Pre-decrypt it: * 1 - determines if a packet is a replay - a simple check in the window * 2 - returns the hi-seq number that should be used to decrypt. * post-decrypt: * Checks whether the packet is a replay or falls out of window * * This funcion should be called even without anti-replay enabled to ensure * the high sequence number is set. */ always_inline int ipsec_sa_anti_replay_and_sn_advance (const ipsec_sa_t *sa, u32 seq, u32 hi_seq_used, bool post_decrypt, u32 *hi_seq_req) { ASSERT ((post_decrypt == false) == (hi_seq_req != 0)); if (!ipsec_sa_is_set_USE_ESN (sa)) { if (hi_seq_req) /* no ESN, therefore the hi-seq is always 0 */ *hi_seq_req = 0; if (!ipsec_sa_is_set_USE_ANTI_REPLAY (sa)) return 0; if (PREDICT_TRUE (seq > sa->seq)) return 0; u32 diff = sa->seq - seq; if (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE > diff) return ((sa->replay_window & (1ULL << diff)) ? 1 : 0); else return 1; return 0; } if (!ipsec_sa_is_set_USE_ANTI_REPLAY (sa)) { /* there's no AR configured for this SA, but in order * to know whether a packet has wrapped the hi ESN we need * to know whether it is out of window. if we use the default * lower bound then we are effectively forcing AR because * out of window packets will get the increased hi seq number * and will thus fail to decrypt. IOW we need a window to know * if the SN has wrapped, but we don't want a window to check for * anti replay. to resolve the contradiction we use a huge window. * if the packet is not within 2^30 of the current SN, we'll consider * it a wrap. */ if (hi_seq_req) { if (seq >= sa->seq) /* The packet's sequence number is larger that the SA's. * that can't be a warp - unless we lost more than * 2^32 packets ... how could we know? */ *hi_seq_req = sa->seq_hi; else { /* The packet's SN is less than the SAs, so either the SN has * wrapped or the SN is just old. */ if (sa->seq - seq > (1 << 30)) /* It's really really really old => it wrapped */ *hi_seq_req = sa->seq_hi + 1; else *hi_seq_req = sa->seq_hi; } } /* * else * this is post-decrpyt and since it decrypted we accept it */ return 0; } if (PREDICT_TRUE (sa->seq >= (IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX))) { /* * the last sequence number VPP recieved is more than one * window size greater than zero. * Case A from RFC4303 Appendix A. */ if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (sa->seq)) { /* * the received sequence number is lower than the lower bound * of the window, this could mean either a replay packet or that * the high sequence number has wrapped. if it decrypts corrently * then it's the latter. */ if (post_decrypt) { if (hi_seq_used == sa->seq_hi) /* the high sequence number used to succesfully decrypt this * packet is the same as the last-sequnence number of the SA. * that means this packet did not cause a wrap. * this packet is thus out of window and should be dropped */ return 1; else /* The packet decrypted with a different high sequence number * to the SA, that means it is the wrap packet and should be * accepted */ return 0; } else { /* pre-decrypt it might be the might that casues a wrap, we * need to decrpyt to find out */ if (hi_seq_req) *hi_seq_req = sa->seq_hi + 1; return 0; } } else { /* * the recieved sequence number greater than the low * end of the window. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi; if (seq <= sa->seq) /* * The recieved seq number is within bounds of the window * check if it's a duplicate */ return (ipsec_sa_anti_replay_check (sa, seq)); else /* * The received sequence number is greater than the window * upper bound. this packet will move the window along, assuming * it decrypts correctly. */ return 0; } } else { /* * the last sequence number VPP recieved is within one window * size of zero, i.e. 0 < TL < WINDOW_SIZE, the lower bound is thus a * large sequence number. * Note that the check below uses unsiged integer arthimetic, so the * RHS will be a larger number. * Case B from RFC4303 Appendix A. */ if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (sa->seq)) { /* * the sequence number is less than the lower bound. */ if (seq <= sa->seq) { /* * the packet is within the window upper bound. * check for duplicates. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi; return (ipsec_sa_anti_replay_check (sa, seq)); } else { /* * the packet is less the window lower bound or greater than * the higher bound, depending on how you look at it... * We're assuming, given that the last sequence number received, * TL < WINDOW_SIZE, that a largeer seq num is more likely to be * a packet that moves the window forward, than a packet that has * wrapped the high sequence again. If it were the latter then * we've lost close to 2^32 packets. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi; return 0; } } else { /* * the packet seq number is between the lower bound (a large nubmer) * and MAX_SEQ_NUM. This is in the window since the window upper bound * tl > 0. * However, since TL is the other side of 0 to the received * packet, the SA has moved on to a higher sequence number. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi - 1; return (ipsec_sa_anti_replay_check (sa, seq)); } } /* unhandled case */ ASSERT (0); return 0; } always_inline u32 ipsec_sa_anti_replay_window_shift (ipsec_sa_t *sa, u32 inc) { u32 n_lost = 0; if (inc < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) { if (sa->seq > IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) { /* * count how many holes there are in the portion * of the window that we will right shift of the end * as a result of this increments */ u64 mask = (((u64) 1 << inc) - 1) << (BITS (u64) - inc); u64 old = sa->replay_window & mask; /* the number of packets we saw in this section of the window */ u64 seen = count_set_bits (old); /* * the number we missed is the size of the window section * minus the number we saw. */ n_lost = inc - seen; } sa->replay_window = ((sa->replay_window) << inc) | 1; } else { /* holes in the replay window are lost packets */ n_lost = BITS (u64) - count_set_bits (sa->replay_window); /* any sequence numbers that now fall outside the window * are forever lost */ n_lost += inc - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE; sa->replay_window = 1; } return (n_lost); } /* * Anti replay window advance * inputs need to be in host byte order. * This function both advances the anti-replay window and the sequence number * We always need to move on the SN but the window updates are only needed * if AR is on. * However, updating the window is trivial, so we do it anyway to save * the branch cost. */ always_inline u64 ipsec_sa_anti_replay_advance (ipsec_sa_t *sa, u32 thread_index, u32 seq, u32 hi_seq) { u64 n_lost = 0; u32 pos; if (ipsec_sa_is_set_USE_ESN (sa)) { int wrap = hi_seq - sa->seq_hi; if (wrap == 0 && seq > sa->seq) { pos = seq - sa->seq; n_lost = ipsec_sa_anti_replay_window_shift (sa, pos); sa->seq = seq; } else if (wrap > 0) { pos = ~seq + sa->seq + 1; n_lost = ipsec_sa_anti_replay_window_shift (sa, pos); sa->seq = seq; sa->seq_hi = hi_seq; } else if (wrap < 0) { pos = ~seq + sa->seq + 1; sa->replay_window |= (1ULL << pos); } else { pos = sa->seq - seq; sa->replay_window |= (1ULL << pos); } } else { if (seq > sa->seq) { pos = seq - sa->seq; n_lost = ipsec_sa_anti_replay_window_shift (sa, pos); sa->seq = seq; } else { pos = sa->seq - seq; sa->replay_window |= (1ULL << pos); } } return n_lost; } /* * Makes choice for thread_id should be assigned. * if input ~0, gets random worker_id based on unix_time_now_nsec */ always_inline u32 ipsec_sa_assign_thread (u32 thread_id) { return ((thread_id) ? thread_id : (unix_time_now_nsec () % vlib_num_workers ()) + 1); } always_inline ipsec_sa_t * ipsec_sa_get (u32 sa_index) { return (pool_elt_at_index (ipsec_sa_pool, sa_index)); } #endif /* __IPSEC_SPD_SA_H__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */