aboutsummaryrefslogtreecommitdiffstats
path: root/vppinfra/vppinfra/phash.c
blob: 14da522594aa146a84347c22399a4645544fc236 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
  Copyright (c) 2005 Eliot Dresselhaus

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

/* This is all stolen from Bob Jenkins and reworked for clib.  Thanks
   once again Bob for the great work. */

/*
------------------------------------------------------------------------------
perfect.c: code to generate code for a hash for perfect hashing.
(c) Bob Jenkins, September 1996, December 1999
You may use this code in any way you wish, and it is free.  No warranty.
I hereby place this in the public domain.
Source is http://burtleburtle.net/bob/c/perfect.c

This generates a minimal perfect hash function.  That means, given a
set of n keys, this determines a hash function that maps each of
those keys into a value in 0..n-1 with no collisions.

The perfect hash function first uses a normal hash function on the key
to determine (a,b) such that the pair (a,b) is distinct for all
keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
tab[] is an array of 1-byte values and scramble[] is a 256-term array of
2-byte or 4-byte values.  If there are n keys, the length of tab[] is a
power of two between n/3 and n.

I found the idea of computing distinct (a,b) values in "Practical minimal
perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
Communications of the ACM, January 1992.  They found the idea in Chichelli
(CACM Jan 1980).  Beyond that, our methods differ.

The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
0..*blen*-1.  A fast hash function determines both a and b
simultaneously.  Any decent hash function is likely to produce
hashes so that (a,b) is distinct for all pairs.  I try the hash
using different values of *salt* until all pairs are distinct.

The final hash is (a XOR scramble[tab[b]]).  *scramble* is a
predetermined mapping of 0..255 into 0..smax-1.  *tab* is an
array that we fill in in such a way as to make the hash perfect.

First we fill in all values of *tab* that are used by more than one
key.  We try all possible values for each position until one works.

This leaves m unmapped keys and m values that something could hash to.
If you treat unmapped keys as lefthand nodes and unused hash values
as righthand nodes, and draw a line connecting each key to each hash
value it could map to, you get a bipartite graph.  We attempt to
find a perfect matching in this graph.  If we succeed, we have
determined a perfect hash for the whole set of keys.

*scramble* is used because (a^tab[i]) clusters keys around *a*.
------------------------------------------------------------------------------
*/

#include <vppinfra/bitmap.h>
#include <vppinfra/format.h>
#include <vppinfra/phash.h>
#include <vppinfra/random.h>

static void
init_keys_direct_u32 (phash_main_t * pm)
{
  int n_keys_left, b_mask, a_shift;
  u32 seed;
  phash_key_t *k;

  seed = pm->hash_seed;
  b_mask = (1 << pm->b_bits) - 1;
  a_shift = BITS (seed) - pm->a_bits;

  k = pm->keys;
  n_keys_left = vec_len (pm->keys);

  while (n_keys_left >= 2)
    {
      u32 x0, y0, z0;
      u32 x1, y1, z1;

      x0 = y0 = z0 = seed;
      x1 = y1 = z1 = seed;
      x0 += (u32) k[0].key;
      x1 += (u32) k[1].key;

      hash_mix32 (x0, y0, z0);
      hash_mix32 (x1, y1, z1);

      k[0].b = z0 & b_mask;
      k[1].b = z1 & b_mask;
      k[0].a = z0 >> a_shift;
      k[1].a = z1 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = k[1].a = 0;

      k += 2;
      n_keys_left -= 2;
    }

  if (n_keys_left >= 1)
    {
      u32 x0, y0, z0;

      x0 = y0 = z0 = seed;
      x0 += k[0].key;

      hash_mix32 (x0, y0, z0);

      k[0].b = z0 & b_mask;
      k[0].a = z0 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = 0;

      k += 1;
      n_keys_left -= 1;
    }
}

static void
init_keys_direct_u64 (phash_main_t * pm)
{
  int n_keys_left, b_mask, a_shift;
  u64 seed;
  phash_key_t *k;

  seed = pm->hash_seed;
  b_mask = (1 << pm->b_bits) - 1;
  a_shift = BITS (seed) - pm->a_bits;

  k = pm->keys;
  n_keys_left = vec_len (pm->keys);

  while (n_keys_left >= 2)
    {
      u64 x0, y0, z0;
      u64 x1, y1, z1;

      x0 = y0 = z0 = seed;
      x1 = y1 = z1 = seed;
      x0 += (u64) k[0].key;
      x1 += (u64) k[1].key;

      hash_mix64 (x0, y0, z0);
      hash_mix64 (x1, y1, z1);

      k[0].b = z0 & b_mask;
      k[1].b = z1 & b_mask;
      k[0].a = z0 >> a_shift;
      k[1].a = z1 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = k[1].a = 0;

      k += 2;
      n_keys_left -= 2;
    }

  if (n_keys_left >= 1)
    {
      u64 x0, y0, z0;

      x0 = y0 = z0 = seed;
      x0 += k[0].key;

      hash_mix64 (x0, y0, z0);

      k[0].b = z0 & b_mask;
      k[0].a = z0 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = 0;

      k += 1;
      n_keys_left -= 1;
    }
}

static void
init_keys_indirect_u32 (phash_main_t * pm)
{
  int n_keys_left, b_mask, a_shift;
  u32 seed;
  phash_key_t *k;

  seed = pm->hash_seed;
  b_mask = (1 << pm->b_bits) - 1;
  a_shift = BITS (seed) - pm->a_bits;

  k = pm->keys;
  n_keys_left = vec_len (pm->keys);

  while (n_keys_left >= 2)
    {
      u32 xyz[6];
      u32 x0, y0, z0;
      u32 x1, y1, z1;

      pm->key_seed2 (pm->private, k[0].key, k[1].key, &xyz);

      x0 = y0 = z0 = seed;
      x1 = y1 = z1 = seed;
      x0 += xyz[0];
      y0 += xyz[1];
      z0 += xyz[2];
      x1 += xyz[3];
      y1 += xyz[4];
      z1 += xyz[5];

      hash_mix32 (x0, y0, z0);
      hash_mix32 (x1, y1, z1);

      k[0].b = z0 & b_mask;
      k[1].b = z1 & b_mask;
      k[0].a = z0 >> a_shift;
      k[1].a = z1 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = k[1].a = 0;

      k += 2;
      n_keys_left -= 2;
    }

  if (n_keys_left >= 1)
    {
      u32 xyz[3];
      u32 x0, y0, z0;

      pm->key_seed1 (pm->private, k[0].key, &xyz);

      x0 = y0 = z0 = seed;
      x0 += xyz[0];
      y0 += xyz[1];
      z0 += xyz[2];

      hash_mix32 (x0, y0, z0);

      k[0].b = z0 & b_mask;
      k[0].a = z0 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = 0;

      k += 1;
      n_keys_left -= 1;
    }
}

static void
init_keys_indirect_u64 (phash_main_t * pm)
{
  int n_keys_left, b_mask, a_shift;
  u64 seed;
  phash_key_t *k;

  seed = pm->hash_seed;
  b_mask = (1 << pm->b_bits) - 1;
  a_shift = BITS (seed) - pm->a_bits;

  k = pm->keys;
  n_keys_left = vec_len (pm->keys);

  while (n_keys_left >= 2)
    {
      u64 xyz[6];
      u64 x0, y0, z0;
      u64 x1, y1, z1;

      pm->key_seed2 (pm->private, k[0].key, k[1].key, &xyz);

      x0 = y0 = z0 = seed;
      x1 = y1 = z1 = seed;
      x0 += xyz[0];
      y0 += xyz[1];
      z0 += xyz[2];
      x1 += xyz[3];
      y1 += xyz[4];
      z1 += xyz[5];

      hash_mix64 (x0, y0, z0);
      hash_mix64 (x1, y1, z1);

      k[0].b = z0 & b_mask;
      k[1].b = z1 & b_mask;
      k[0].a = z0 >> a_shift;
      k[1].a = z1 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = k[1].a = 0;

      k += 2;
      n_keys_left -= 2;
    }

  if (n_keys_left >= 1)
    {
      u64 xyz[3];
      u64 x0, y0, z0;

      pm->key_seed1 (pm->private, k[0].key, &xyz);

      x0 = y0 = z0 = seed;
      x0 += xyz[0];
      y0 += xyz[1];
      z0 += xyz[2];

      hash_mix64 (x0, y0, z0);

      k[0].b = z0 & b_mask;
      k[0].a = z0 >> a_shift;
      if (PREDICT_FALSE (a_shift >= BITS (z0)))
	k[0].a = 0;

      k += 1;
      n_keys_left -= 1;
    }
}

/*
 * insert keys into table according to key->b
 * check if the initial hash might work
 */
static int
init_tabb (phash_main_t * pm)
{
  int no_collisions;
  phash_tabb_t *tb;
  phash_key_t *k, *l;

  if (pm->key_seed1)
    {
      if (pm->flags & PHASH_FLAG_MIX64)
	init_keys_indirect_u64 (pm);
      else
	init_keys_indirect_u32 (pm);
    }
  else
    {
      if (pm->flags & PHASH_FLAG_MIX64)
	init_keys_direct_u64 (pm);
      else
	init_keys_direct_u32 (pm);
    }

  if (!pm->tabb)
    vec_resize (pm->tabb, 1 << pm->b_bits);
  else
    vec_foreach (tb, pm->tabb) phash_tabb_free (tb);

  /* Two keys with the same (a,b) guarantees a collision */
  no_collisions = 1;
  vec_foreach (k, pm->keys)
  {
    u32 i, *ki;

    tb = pm->tabb + k->b;
    ki = tb->keys;
    for (i = 0; i < vec_len (ki); i++)
      {
	l = pm->keys + ki[i];
	if (k->a == l->a)
	  {
	    /* Given keys are supposed to be unique. */
	    if (pm->key_is_equal
		&& pm->key_is_equal (pm->private, l->key, k->key))
	      clib_error ("duplicate keys");
	    no_collisions = 0;
	    goto done;
	  }
      }

    vec_add1 (tb->keys, k - pm->keys);
  }

done:
  return no_collisions;
}

/* Try to apply an augmenting list */
static int
apply (phash_main_t * pm, u32 tail, u32 rollback)
{
  phash_key_t *k;
  phash_tabb_t *pb;
  phash_tabq_t *q_child, *q_parent;
  u32 ki, i, hash, child, parent;
  u32 stabb;			/* scramble[tab[b]] */
  int no_collision;

  no_collision = 1;

  /* Walk from child to parent until root is reached. */
  for (child = tail - 1; child; child = parent)
    {
      q_child = &pm->tabq[child];
      parent = q_child->parent_q;
      q_parent = &pm->tabq[parent];

      /* find parent's list of siblings */
      ASSERT (q_parent->b_q < vec_len (pm->tabb));
      pb = pm->tabb + q_parent->b_q;

      /* erase old hash values */
      stabb = pm->scramble[pb->val_b];
      for (i = 0; i < vec_len (pb->keys); i++)
	{
	  ki = pb->keys[i];
	  k = pm->keys + ki;
	  hash = k->a ^ stabb;

	  /* Erase hash for all of child's siblings. */
	  if (ki == pm->tabh[hash])
	    pm->tabh[hash] = ~0;
	}

      /* change pb->val_b, which will change the hashes of all parent siblings */
      pb->val_b = rollback ? q_child->oldval_q : q_child->newval_q;

      /* set new hash values */
      stabb = pm->scramble[pb->val_b];
      for (i = 0; i < vec_len (pb->keys); i++)
	{
	  ki = pb->keys[i];
	  k = pm->keys + ki;

	  hash = k->a ^ stabb;
	  if (rollback)
	    {
	      if (parent == 0)
		continue;	/* root never had a hash */
	    }
	  else if (pm->tabh[hash] != ~0)
	    {
	      /* Very rare case: roll back any changes. */
	      apply (pm, tail, /* rollback changes */ 1);
	      no_collision = 0;
	      goto done;
	    }
	  pm->tabh[hash] = ki;
	}
    }

done:
  return no_collision;
}


/*
-------------------------------------------------------------------------------
augment(): Add item to the mapping.

Construct a spanning tree of *b*s with *item* as root, where each
parent can have all its hashes changed (by some new val_b) with
at most one collision, and each child is the b of that collision.

I got this from Tarjan's "Data Structures and Network Algorithms".  The
path from *item* to a *b* that can be remapped with no collision is
an "augmenting path".  Change values of tab[b] along the path so that
the unmapped key gets mapped and the unused hash value gets used.

Assuming 1 key per b, if m out of n hash values are still unused,
you should expect the transitive closure to cover n/m nodes before
an unused node is found.  Sum(i=1..n)(n/i) is about nlogn, so expect
this approach to take about nlogn time to map all single-key b's.
-------------------------------------------------------------------------------

high_water: a value higher than any now in tabb[].water_b.
*/
static int
augment (phash_main_t * pm, u32 b_root, u32 high_water)
{
  u32 q;			/* current position walking through the queue */
  u32 tail;			/* tail of the queue.  0 is the head of the queue. */
  phash_tabb_t *tb_parent, *tb_child, *tb_hit;
  phash_key_t *k_parent, *k_child;
  u32 v, v_limit;		/* possible value for myb->val_b */
  u32 i, ki, hash;

  v_limit =
    1 << ((pm->flags & PHASH_FLAG_USE_SCRAMBLE) ? pm->s_bits : BITS (u8));

  /* Initialize the root of the spanning tree. */
  pm->tabq[0].b_q = b_root;
  tail = 1;

  /* construct the spanning tree by walking the queue, add children to tail */
  for (q = 0; q < tail; q++)
    {
      if ((pm->flags & PHASH_FLAG_FAST_MODE)
	  && !(pm->flags & PHASH_FLAG_MINIMAL) && q == 1)
	break;			/* don't do transitive closure */

      tb_parent = pm->tabb + pm->tabq[q].b_q;	/* the b for this node */

      for (v = 0; v < v_limit; v++)
	{
	  tb_child = 0;

	  for (i = 0; i < vec_len (tb_parent->keys); i++)
	    {
	      ki = tb_parent->keys[i];
	      k_parent = pm->keys + ki;

	      hash = k_parent->a ^ pm->scramble[v];
	      if (hash >= pm->hash_max)
		goto try_next_v;	/* hash code out of bounds => we can't use this v */

	      ki = pm->tabh[hash];
	      if (ki == ~0)
		continue;

	      k_child = pm->keys + ki;
	      tb_hit = pm->tabb + k_child->b;

	      if (tb_child)
		{
		  /* Hit at most one child b. */
		  if (tb_child == tb_hit)
		    goto try_next_v;
		}
	      else
		{
		  /* Remember this as child b. */
		  tb_child = tb_hit;
		  if (tb_hit->water_b == high_water)
		    goto try_next_v;	/* already explored */
		}
	    }

	  /* tb_parent with v has either one or zero collisions. */

	  /* add childb to the queue of reachable things */
	  if (tb_child)
	    tb_child->water_b = high_water;
	  pm->tabq[tail].b_q = tb_child ? tb_child - pm->tabb : ~0;
	  pm->tabq[tail].newval_q = v;	/* how to make parent (myb) use this hash */
	  pm->tabq[tail].oldval_q = tb_parent->val_b;	/* need this for rollback */
	  pm->tabq[tail].parent_q = q;
	  ++tail;

	  /* Found a v with no collisions? */
	  if (!tb_child)
	    {
	      /* Try to apply the augmenting path. */
	      if (apply (pm, tail, /* rollback */ 0))
		return 1;	/* success, item was added to the perfect hash */
	      --tail;		/* don't know how to handle such a child! */
	    }

	try_next_v:
	  ;
	}
    }
  return 0;
}


static phash_tabb_t *sort_tabb;

static int
phash_tabb_compare (void *a1, void *a2)
{
  u32 *b1 = a1;
  u32 *b2 = a2;
  phash_tabb_t *tb1, *tb2;

  tb1 = sort_tabb + b1[0];
  tb2 = sort_tabb + b2[0];

  return ((int) vec_len (tb2->keys) - (int) vec_len (tb1->keys));
}

/* find a mapping that makes this a perfect hash */
static int
perfect (phash_main_t * pm)
{
  u32 i;

  /* clear any state from previous attempts */
  if (vec_bytes (pm->tabh))
    memset (pm->tabh, ~0, vec_bytes (pm->tabh));

  vec_validate (pm->tabb_sort, vec_len (pm->tabb) - 1);
  for (i = 0; i < vec_len (pm->tabb_sort); i++)
    pm->tabb_sort[i] = i;

  sort_tabb = pm->tabb;

  vec_sort_with_function (pm->tabb_sort, phash_tabb_compare);

  /* In descending order by number of keys, map all *b*s */
  for (i = 0; i < vec_len (pm->tabb_sort); i++)
    {
      if (!augment (pm, pm->tabb_sort[i], i + 1))
	return 0;
    }

  /* Success!  We found a perfect hash of all keys into 0..nkeys-1. */
  return 1;
}


/*
 * Find initial a_bits = log2 (a_max), b_bits = log2 (b_max).
 * Initial a_max and b_max values were found empirically.  Some factors:
 *
 * If s_max<256 there is no scramble, so tab[b] needs to cover 0..s_max-1.
 *
 * a_max and b_max must be powers of 2 because the values in 0..a_max-1 and
 * 0..b_max-1 are produced by applying a bitmask to the initial hash function.
 *
 * a_max must be less than s_max, in fact less than n_keys, because otherwise
 * there would often be no i such that a^scramble[i] is in 0..n_keys-1 for
 * all the *a*s associated with a given *b*, so there would be no legal
 * value to assign to tab[b].  This only matters when we're doing a minimal
 * perfect hash.
 *
 * It takes around 800 trials to find distinct (a,b) with nkey=s_max*(5/8)
 * and a_max*b_max = s_max*s_max/32.
 *
 * Values of b_max less than s_max/4 never work, and s_max/2 always works.
 *
 * We want b_max as small as possible because it is the number of bytes in
 * the huge array we must create for the perfect hash.
 *
 * When nkey <= s_max*(5/8), b_max=s_max/4 works much more often with
 * a_max=s_max/8 than with a_max=s_max/4.  Above s_max*(5/8), b_max=s_max/4
 * doesn't seem to care whether a_max=s_max/8 or a_max=s_max/4.  I think it
 * has something to do with 5/8 = 1/8 * 5.  For example examine 80000,
 * 85000, and 90000 keys with different values of a_max.  This only matters
 * if we're doing a minimal perfect hash.
 *
 * When a_max*b_max <= 1<<U32BITS, the initial hash must produce one integer.
 * Bigger than that it must produce two integers, which increases the
 * cost of the hash per character hashed.
 */
static void
guess_initial_parameters (phash_main_t * pm)
{
  u32 s_bits, s_max, a_max, b_max, n_keys;
  int is_minimal, is_fast_mode;
  const u32 b_max_use_scramble_threshold = 4096;

  is_minimal = (pm->flags & PHASH_FLAG_MINIMAL) != 0;
  is_fast_mode = (pm->flags & PHASH_FLAG_FAST_MODE) != 0;

  n_keys = vec_len (pm->keys);
  s_bits = max_log2 (n_keys);
  s_max = 1 << s_bits;
  a_max = 0;

  if (is_minimal)
    {
      switch (s_bits)
	{
	case 0:
	  a_max = 1;
	  b_max = 1;
	case 1:
	case 2:
	case 3:
	case 4:
	case 5:
	case 6:
	case 7:
	case 8:
	  /*
	   * Was: a_max = is_minimal ? s_max / 2 : s_max;
	   * However, we know that is_minimal must be true, so the
	   * if-arm of the ternary expression is always executed.
	   */
	  a_max = s_max / 2;
	  b_max = s_max / 2;
	  break;
	case 9:
	case 10:
	case 11:
	case 12:
	case 13:
	case 14:
	case 15:
	case 16:
	case 17:
	  if (is_fast_mode)
	    {
	      a_max = s_max / 2;
	      b_max = s_max / 4;
	    }
	  else if (s_max / 4 < b_max_use_scramble_threshold)
	    {
	      if (n_keys <= s_max * 0.52)
		a_max = b_max = s_max / 8;
	      else
		a_max = b_max = s_max / 4;
	    }
	  else
	    {
	      a_max = ((n_keys <= s_max * (5.0 / 8.0)) ? s_max / 8 :
		       (n_keys <=
			s_max * (3.0 / 4.0)) ? s_max / 4 : s_max / 2);
	      b_max = s_max / 4;	/* always give the small size a shot */
	    }
	  break;
	case 18:
	  if (is_fast_mode)
	    a_max = b_max = s_max / 2;
	  else
	    {
	      a_max = s_max / 8;	/* never require the multiword hash */
	      b_max = (n_keys <= s_max * (5.0 / 8.0)) ? s_max / 4 : s_max / 2;
	    }
	  break;
	case 19:
	case 20:
	  a_max = (n_keys <= s_max * (5.0 / 8.0)) ? s_max / 8 : s_max / 2;
	  b_max = (n_keys <= s_max * (5.0 / 8.0)) ? s_max / 4 : s_max / 2;
	  break;
	default:
	  /* Just find a hash as quick as possible.
	     We'll be thrashing virtual memory at this size. */
	  a_max = b_max = s_max / 2;
	  break;
	}
    }
  else
    {
      /* Non-minimal perfect hash. */
      if (is_fast_mode && n_keys > s_max * 0.8)
	{
	  s_max *= 2;
	  s_bits += 1;
	}

      if (s_max / 4 <= (1 << 14))
	b_max = ((n_keys <= s_max * 0.56) ? s_max / 32 :
		 (n_keys <= s_max * 0.74) ? s_max / 16 : s_max / 8);
      else
	b_max = ((n_keys <= s_max * 0.6) ? s_max / 16 :
		 (n_keys <= s_max * 0.8) ? s_max / 8 : s_max / 4);

      if (is_fast_mode && b_max < s_max / 8)
	b_max = s_max / 8;

      if (a_max < 1)
	a_max = 1;
      if (b_max < 1)
	b_max = 1;
    }

  ASSERT (s_max == (1 << s_bits));
  ASSERT (is_pow2 (a_max));
  ASSERT (is_pow2 (b_max));
  pm->s_bits = s_bits;
  pm->a_bits = min_log2 (a_max);
  pm->b_bits = min_log2 (b_max);
  if (b_max >= b_max_use_scramble_threshold)
    pm->flags |= PHASH_FLAG_USE_SCRAMBLE;
}

/* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
/* permute(0)=0.  This is intended and useful. */
always_inline u32
scramble_permute (u32 x, u32 nbits)
{
  int i;
  int mask = (1 << nbits) - 1;
  int const2 = 1 + nbits / 2;
  int const3 = 1 + nbits / 3;
  int const4 = 1 + nbits / 4;
  int const5 = 1 + nbits / 5;
  for (i = 0; i < 20; i++)
    {
      x = (x + (x << const2)) & mask;
      x = (x ^ (x >> const3));
      x = (x + (x << const4)) & mask;
      x = (x ^ (x >> const5));
    }
  return x;
}

/* initialize scramble[] with distinct random values in 0..smax-1 */
static void
scramble_init (phash_main_t * pm)
{
  u32 i;

  /* fill scramble[] with distinct random integers in 0..smax-1 */
  vec_validate (pm->scramble, (1 << (pm->s_bits < 8 ? 8 : pm->s_bits)) - 1);
  for (i = 0; i < vec_len (pm->scramble); i++)
    pm->scramble[i] = scramble_permute (i, pm->s_bits);
}

/* Try to find a perfect hash function. */
clib_error_t *
phash_find_perfect_hash (phash_main_t * pm)
{
  clib_error_t *error = 0;
  u32 max_a_bits, n_tries_this_a_b, want_minimal;

  /* guess initial values for s_max, a_max and b_max */
  guess_initial_parameters (pm);

  want_minimal = pm->flags & PHASH_FLAG_MINIMAL;

new_s:
  if (pm->b_bits == 0)
    pm->a_bits = pm->s_bits;

  max_a_bits = pm->s_bits - want_minimal;
  if (max_a_bits < 1)
    max_a_bits = 1;

  pm->hash_max = want_minimal ? vec_len (pm->keys) : (1 << pm->s_bits);

  scramble_init (pm);

  /* Allocate working memory. */
  vec_free (pm->tabh);
  vec_validate_init_empty (pm->tabh, pm->hash_max - 1, ~0);
  vec_free (pm->tabq);
  vec_validate (pm->tabq, 1 << pm->b_bits);

  /* Actually find the perfect hash */
  n_tries_this_a_b = 0;
  while (1)
    {
      /* Choose random hash seeds until keys become unique. */
      pm->hash_seed = random_u64 (&pm->random_seed);
      pm->n_seed_trials++;
      if (init_tabb (pm))
	{
	  /* Found unique (A, B). */

	  /* Hash may already be perfect. */
	  if (pm->b_bits == 0)
	    goto done;

	  pm->n_perfect_calls++;
	  if (perfect (pm))
	    goto done;

	  goto increase_b;
	}

      /* Keep trying with different seed value. */
      n_tries_this_a_b++;
      if (n_tries_this_a_b < 2048)
	continue;

      /* Try to put more bits in (A,B) to make distinct (A,B) more likely */
      if (pm->a_bits < max_a_bits)
	pm->a_bits++;
      else if (pm->b_bits < pm->s_bits)
	{
	increase_b:
	  vec_resize (pm->tabb, vec_len (pm->tabb));
	  vec_resize (pm->tabq, vec_len (pm->tabq));
	  pm->b_bits++;
	}
      else
	{
	  /* Can't increase (A, B) any more, so try increasing S. */
	  goto new_s;
	}
    }

done:
  /* Construct mapping table for hash lookups. */
  if (!error)
    {
      u32 b, v;

      pm->a_shift = ((pm->flags & PHASH_FLAG_MIX64) ? 64 : 32) - pm->a_bits;
      pm->b_mask = (1 << pm->b_bits) - 1;

      vec_resize (pm->tab, vec_len (pm->tabb));
      for (b = 0; b < vec_len (pm->tabb); b++)
	{
	  v = pm->tabb[b].val_b;

	  /* Apply scramble now for small enough value of b_bits. */
	  if (!(pm->flags & PHASH_FLAG_USE_SCRAMBLE))
	    v = pm->scramble[v];

	  pm->tab[b] = v;
	}
    }

  /* Free working memory. */
  phash_main_free_working_memory (pm);

  return error;
}

/* Slow hash computation for general keys. */
uword
phash_hash_slow (phash_main_t * pm, uword key)
{
  u32 a, b, v;

  if (pm->flags & PHASH_FLAG_MIX64)
    {
      u64 x0, y0, z0;

      x0 = y0 = z0 = pm->hash_seed;

      if (pm->key_seed1)
	{
	  u64 xyz[3];
	  pm->key_seed1 (pm->private, key, &xyz);
	  x0 += xyz[0];
	  y0 += xyz[1];
	  z0 += xyz[2];
	}
      else
	x0 += key;

      hash_mix64 (x0, y0, z0);

      a = z0 >> pm->a_shift;
      b = z0 & pm->b_mask;
    }
  else
    {
      u32 x0, y0, z0;

      x0 = y0 = z0 = pm->hash_seed;

      if (pm->key_seed1)
	{
	  u32 xyz[3];
	  pm->key_seed1 (pm->private, key, &xyz);
	  x0 += xyz[0];
	  y0 += xyz[1];
	  z0 += xyz[2];
	}
      else
	x0 += key;

      hash_mix32 (x0, y0, z0);

      a = z0 >> pm->a_shift;
      b = z0 & pm->b_mask;
    }

  v = pm->tab[b];
  if (pm->flags & PHASH_FLAG_USE_SCRAMBLE)
    v = pm->scramble[v];
  return a ^ v;
}

/* Verify that perfect hash is perfect. */
clib_error_t *
phash_validate (phash_main_t * pm)
{
  phash_key_t *k;
  uword *unique_bitmap = 0;
  clib_error_t *error = 0;

  vec_foreach (k, pm->keys)
  {
    uword h = phash_hash_slow (pm, k->key);

    if (h >= pm->hash_max)
      {
	error = clib_error_return (0, "hash out of range %wd", h);
	goto done;
      }

    if (clib_bitmap_get (unique_bitmap, h))
      {
	error = clib_error_return (0, "hash non-unique");
	goto done;
      }

    unique_bitmap = clib_bitmap_ori (unique_bitmap, h);
  }

done:
  clib_bitmap_free (unique_bitmap);
  return error;
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */